Skip to main content
Log in

Determination of Optimum Sr Level for Eutectic Si Modification in Al–Si Cast Alloys Using Thermal analysis and Tensile Properties

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

This study presents a correlation between the depression in eutectic growth temperature as a result of Sr modification and the tensile properties of Al–Si cast alloys. In order to study the role that Sr exerts on the solidification behavior, modification and mechanical properties, controlled solidification experiments including thermal analysis were performed. Using three mold materials for different cooling rates, tensile testing was conducted on Al–Si alloys with various Sr levels (~35–500 ppm). The gradient solidification technique was used to produce directionally solidified tensile test specimens containing low levels of defects. The depression in eutectic Si growth temperature was correlated with the Sr additions and the tensile properties (elongation to failure and tensile strength).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. M. Okayasu et al., A study of the mechanical properties of an Al–Si–Cu alloy (ADC12) produced by various casting processes. Mater. Sci. Eng. A 543, 185–192 (2012)

    Article  Google Scholar 

  2. S. Shabestari, S. Ghodrat, Assessment of modification and formation of intermetallic compounds in aluminum alloy using thermal analysis. Mater. Sci. Eng. A 467(1), 150–158 (2007)

    Article  Google Scholar 

  3. M. Zamani, S. Seifeddine, M. Aziziderouei, The role of Sr on microstructure formation and mechanical properties of Al–Si–Cu–Mg cast alloy, in TMS 2013 annual meeting and exhibition, San Antonio, TX, 3–7 March 2013, pp. 297–302

  4. D. Xugang, Z. Jie, J. Yaojun, L. Bin, L. Zhenzhen, W. Wenhao, B. Huan, Influence of Sr on microstructure and mechanical properties of ZL114 cast alloy. China Foundry 8(4), 007 (2011)

    Google Scholar 

  5. B. Kulunk et al., Beneficial effects of strontium on A380 alloy (96–170). Trans. Am. Foundrymen’s Soc. 104, 1189–1194 (1996)

    Google Scholar 

  6. L.F. Mondolfo, Structure and Properties of Aluminum Alloys (Metallurgiya, Moscow, 1979)

    Google Scholar 

  7. D. Apelian, G.K. Sigworth, K. Whaler, Assessment of grain refinement and modification of Al–Si foundry alloys by thermal analysis. AFS Trans. 92(2), 297–307 (1984)

    Google Scholar 

  8. J. Charbonnier, Microprocessor assisted thermal analysis testing of aluminum alloy structures. AFS Trans. 92, 907–922 (1984)

    Google Scholar 

  9. N. Tenekedjiev, H. Mulazimoglu, B. Closset, J. Gruzleski, Microstructures and Thermal Analysis of Strontium-Treated Aluminum–Silicon Alloys (American Foundrymen’s Society, Des Plaines, 1995)

    Google Scholar 

  10. M. Djurdjevic, H. Jiang, J. Sokolowski, On-line prediction of aluminum–silicon eutectic modification level using thermal analysis. Mater. Charact. 46(1), 31–38 (2001)

    Article  Google Scholar 

  11. R. Francis, J. Sokolowski, Prediction of the aluminum silicon modification level in the AlSiCu alloys using artificial neural networks. Metalurgija 14(1), 3–15 (2008)

    Google Scholar 

  12. J.E. Gruzleski, B. Closset, The Treatment of Liquid Aluminum–Silicon Alloys (American Foundry Society, Des Plaines, 1990)

    Google Scholar 

  13. G.F. Vander Voort, Metallography and Microstructures, vol. 9 (ASM International, Geauga County, 2004)

    Google Scholar 

  14. L. Backerud, G. Chai, J. Tamminen, Solidification Characteristics of Aluminum Alloys. Vol. 2: Foundry Alloys (AFS/Skanaluminium, Des Plaines, 1990), pp. 25–38

    Google Scholar 

  15. L. Dobrzański, R. Maniara, J. Sokolowski, The effect of cast Al–Si–Cu alloy solidification rate on alloy thermal characteristics. J. Achiev. Mater. Manuf. Eng. 17(1–2), 217–220 (2006)

    Google Scholar 

  16. A. Dahle et al., Eutectic nucleation and growth in hypoeutectic Al–Si alloys at different strontium levels. Metall. Mater. Trans. A 32(4), 949–960 (2001)

    Article  Google Scholar 

  17. P.B. Crosley, L. Mondolfo, The modification of aluminum–silicon alloys. Mod. Cast. 49(3), 99–100 (1966)

    Google Scholar 

  18. M. Day, A. Hellawell, The microstructure and crystallography of aluminium-silicon eutectic alloys, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1968. The Royal Society

  19. S.D. McDonald, K. Nogita, A.K. Dahle, Eutectic nucleation in Al-Si alloys. Acta Mater. 52(14), 4273–4280 (2004)

    Article  Google Scholar 

  20. M. Zamani, S. Seifeddine, Assessment of modification level in EN AC-46000 aluminum casting alloys using thermal analysis and microscopic evaluation. Light Met. 2015, 955–960 (2015)

    Google Scholar 

  21. M. Makhlouf, H. Guthy, The aluminum–silicon eutectic reaction: mechanisms and crystallography. J. Light Met. 1(4), 199–218 (2001)

    Article  Google Scholar 

  22. M. Zarif, B. Mckay, P. Schumacher, Study of heterogeneous nucleation of eutectic Si in high-purity Al–Si alloys with Sr addition. Metall. Mater. Trans. A 42(6), 1684–1691 (2011)

    Article  Google Scholar 

  23. G. Sigworth, Theoretical and practical aspects of the modification of Al–Si alloys. AFS Trans. 66, 7–16 (1983)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the KK-foundation in Sweden and Kongsberg Automotive AB as a part of the CompCAST program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Zamani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani, M., Seifeddine, S. Determination of Optimum Sr Level for Eutectic Si Modification in Al–Si Cast Alloys Using Thermal analysis and Tensile Properties. Inter Metalcast 10, 457–465 (2016). https://doi.org/10.1007/s40962-016-0032-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-016-0032-8

Keywords

Navigation