Skip to main content
Log in

Abstract

The Muskingum model is not only a simple conceptual flood routing method but is also widely used by water resources engineers. Since Muskingum model parameters cannot be determined physically, the calibration of these parameters is the only challenge of this method. Although various techniques have been recommended for this purpose, a more accurate method with faster convergence rate is still required to improve the computational precision for parameter estimation. In this study, a new model was presented based on the linear Muskingum model for more accurate flood routing. In this model, the Muskingum parameters are allowed to change in the flood period, whereas in the classical model they are forced to be fixed over the entire flood interval. The Modified Honey Bee Mating Optimization (MHBMO) algorithm was utilized for the estimation of linear Muskingum parameters. The proposed model using the MHBMO algorithm was compared with constant-parameter model calibrated with other techniques in the literature for a case study. The results demonstrate that not only can the new model reduce the sum of the square of the deviations more than 50 %, but the MHBMO algorithm can also be confidently used to estimate the parameters of the Muskingum model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Afshar A, Bozorg Haddad O, Marino Miguel A, Adams BJ (2007) Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation. J Franklin Inst 344(5):452–462

    Article  MATH  Google Scholar 

  • Afzali SH (2015) New model for determining local scour depth around piers. Arab J Sci Eng. doi:10.1007/s13369-015-1983-4

    Google Scholar 

  • Chen J, Yang X (2007) Optimal parameter estimation for Muskingum model based on Gray-Encoded Accelerating Genetic algorithm. Commun Nonlinear Sci Numer Simul 12:849–858

    Article  Google Scholar 

  • Chow VT (1964) Handbook of applied hydrology. McGraw-Hill, New York

    Google Scholar 

  • Easa SM (2012) Improved nonlinear Muskingum model with variable exponent parameter. J Hydrol Eng ASCE 18(12):1790–1794

    Article  Google Scholar 

  • Esmi Jahromi M, Afzali SH (2014) Application of the HBMO approach to predict the total sediment discharge. Iran J Sci Technol Trans Civ Eng 38(C1):123–135

    Google Scholar 

  • Gill MA (1978) Flood routing by the Muskingum method. J Hydrol 36(3):353–363

    Article  Google Scholar 

  • Guang-Te W, Singh V (1992) Muskingum method with variable parameters for flood routing in channels. J Hydrol 134(1):57–76

    Article  Google Scholar 

  • Haddad OB, Afshar A, Marino MA (2006) Honey bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization. Water Resour Manag 20(5):661–680

    Article  Google Scholar 

  • Koussis A (1978) Theoretical estimations of flood routing parameters. J Hydraul Eng ASCE 104(HY1):109–115

    Google Scholar 

  • Lamberti P, Pilati S (1988) A simplified flood routing model: variable parameter Muskingum (VPM). Meccanica 23(2):81–87

    Article  MATH  Google Scholar 

  • Linsley R, Kohler MA, Paulhus J (1982) Hydrology for engineers. McGraw-Hill, New York

    Google Scholar 

  • Mays LW (2011) Water resources engineering, 2nd edn. Wiley, USA

    Google Scholar 

  • Niazkar M, Afzali SH (2015a) Optimum design of lined channel sections. Water Resour Manag 29(6):1921–1932

    Article  Google Scholar 

  • Niazkar M, Afzali SH (2015b) Assessment of modified honey bee mating optimization for parameter estimation of nonlinear Muskingum models. J Hydrol Eng ASCE 20(4):04014055

    Article  Google Scholar 

  • Niknam T (2009) An efficient hybrid evolutionary algorithm based on PSO and HBMO algorithms for multi-objective distribution feeder reconfiguration. Energy Convers Manag 50(8):2074–2082

    Article  Google Scholar 

  • Niknam T, Meymand HZ, Mojarrad HD (2011) An efficient algorithm for multi-objective optimal operation management of distribution network considering fuel cell power plants. Energy 36(1):119–132

    Article  Google Scholar 

  • O’Donnell T, Pearson CP, Woods RA (1988) Improved fitting for three-parameter Muskingum procedure. J Hydraul Eng ASCE 114(5):516–528

    Article  Google Scholar 

  • Perumal M (1994) Hydrodynamic derivation of a variable parameter Muskingum method: 1. Theory and solution procedure. Hydrol Sci J 39(5):431–442

    Article  Google Scholar 

  • Perumal M, Raju KGR (1998) Variable-parameter stage-hydrograph routing method. II: evaluation. J Hydrol Eng ASCE 3(2):115–121

    Article  Google Scholar 

  • Ponce VM, Changanti PV (1994) Variable-parameter Muskingum–Cunge method revisited. J Hydrol 162(3):433–439

    Article  Google Scholar 

  • Ponce VM, Yevjevich V (1978) Muskingum-Cunge method with variable parameters. J Hydraul Eng ASCE 104(1):1663–1667

    Google Scholar 

  • Qu G (1977) Parameter estimation for Muskingum models. J Hydrol 36(3):40–43

    Google Scholar 

  • Tahershamsi A, Sheikholeslami R (2011) Optimization to identify Muskingum model parameters using Imperialist Competitive Algorithm. Int J Optim Civil Eng 3:475–484

    Google Scholar 

  • Tang XN, Knight DW, Samuels PG (1999) Volume conservation in variable parameter Muskingum–Cunge method. J Hydraul Eng ASCE 125(6):610–620

    Article  Google Scholar 

  • Wang W, Xu Z, Qiu L, Xu D (2009) Hybrid chaotic genetic algorithms for optimal parameter estimation of Muskingum flood routing model. In: Computational sciences and optimization, 2009. CSO 2009. International joint conference, vol 1, pp 215–218

  • Wang W, Kang Y, Qiu L (2010) Optimal parameter estimation for Muskingum model using a modified particle swarm algorithm. In: 2010 third international joint conference on computational science and optimization (CSO), vol 2, pp 153–156

  • Wilson EM (1974) Engineering hydrology. Macmillan Education LTD, Hampshire

    Book  Google Scholar 

  • Yang X, Jin J, Chen Z, Wei Y (1998) A new approach for parameter estimation of Muskingum routing model. J Catastrophol 13:1–6

    Google Scholar 

  • Yoon J, Padmanabhan G (1993) Parameter estimation of linear and nonlinear Muskingum models. J Water Resour Plan Manag ASCE 119(5):600–610

    Article  Google Scholar 

  • Zhan SC, Xu J (2005) Application of ant colony algorithm to parameter estimation of Muskingum Routing Model. Ziran Zaihai Xuebao/J Nat Disasters 14(5):20–24

    Google Scholar 

  • Zhengxiang Y, Ling K (2010) Application and comparison of several intelligent algorithms on Muskingum routing model. In: Information and financial engineering (ICIFE), 2010 2nd IEEE international conference, pp 910–914

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Afzali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzali, S.H. Variable-Parameter Muskingum Model. Iran. J. Sci. Technol.Trans. Civ. Eng. 40, 59–68 (2016). https://doi.org/10.1007/s40996-016-0001-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-016-0001-8

Keywords

Navigation