Skip to main content
Log in

Dynamic Performance Evaluation of Serial and Parallel RPR Manipulators with Flexible Intermediate Links

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

This paper presents a comprehensive study of the workspace, dynamic characteristics and accuracy of three planar flexible manipulators with 3-RPR, 2-RPR and 1-RPR structures moving at high speed. A geometrical procedure is employed to obtain the workspaces of the manipulators. The flexible intermediate links are modeled as the Euler–Bernoulli beams with fixed-free boundary conditions based on the assumed mode method. Using the Lagrange multipliers, a generalized set of differential algebraic equations of motion is developed for the planar RPR manipulators. Three moving constraints, which are obtained from an inverse kinematics analysis and applied to the actuated base joints, impose the end-effector to follow a high-speed circular motion as the desired trajectory. From this analysis, the dynamic performance of 1-RPR flexible serial manipulator and 2-RPR and 3-RPR flexible parallel manipulators in tracking a desired trajectory is evaluated. Based on the results, it is concluded that, in addition to the specific structure of the manipulator, the accuracy generally depends on the operation conditions. The results contest the general assertion which claims that parallel manipulators have more accuracy and stiffness than serial counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Binaud N, Caro S, Wenger P (2011) Comparison of 3-RPR planar parallel manipulators with regard to their kinetostatic performance and sensitivity to geometric uncertainties. Meccanica 46(1):75–88

    Article  MathSciNet  MATH  Google Scholar 

  • Bonev I, Zlatanov D, Gosselin C (2003) Singularity analysis of 3-DOF planar parallel mechanisms via screw theory. J Mech Des 25:573–581

    Article  Google Scholar 

  • Briot S, Bonev IA (2007) Are parallel robots more accurate than serial robots? CSME Trans 31(4):445–456

    MATH  Google Scholar 

  • Briot S, Bonev IA (2008) Accuracy analysis of 3-DOF planar parallel robots. Mech Mach Theory 43(4):445–458

    Article  MATH  Google Scholar 

  • Briot S, Bonev I, Chablat D, Wenger P, Arakelian V (2008) Self-motions of general 3-RPR planar parallel robots. Int J Robot Res 27:855–866

    Article  Google Scholar 

  • Dwivedy SK, Eberhard P (2006) Dynamic analysis of flexible manipulators: a literature review. Mech Mach Theory 41:749–777

    Article  MathSciNet  MATH  Google Scholar 

  • El-Khasawneh B, Alazzam A (2013) Kinematics, dynamics and vibration models for 3RPR parallel kinematics manipulator. In: ASME 2013 international mechanical engineering congress and exposition 14: vibration, acoustics and wave propagation. San Diego, California

  • Firoozabadi AE, Ebrahimi S, Amirian G (2015) Dynamic characteristics of a 3-RPR planar parallel manipulator with flexible intermediate links. Robotica 33:1909–1925

    Article  Google Scholar 

  • Guan L, Yun Y, Wang J, Wang L (2004) Kinematics of a tricept-like parallel robot. In: 2004 IEEE international conference on systems, man and cybernetics, pp 5312–5316

  • Kang B, Mills JK (2002) Dynamic modeling of structurally-flexible planar parallel manipulator. Robotica 20:329–339

    Google Scholar 

  • Le TD, Kang HJ, Suh YS, Ro YS (2013) An online self-gain tuning method using neural networks for nonlinear PD computed torque controller of a 2-dof parallel manipulator. Neurocomputing 116:53–61

    Article  Google Scholar 

  • Merlet J-P (2006) Parallel robots, 2nd edn. Springer, Berlin, pp 4–7

    MATH  Google Scholar 

  • Niaritsiry T-F, Fazenda N, Clavel R (2004) Study of the sources of inaccuracy of a 3 DOF flexure hinge-based parallel manipulator. In: IEEE international conference on robotics and automation, vol 4

  • Ogbobe P, Zhengmao Y, Jiang H, Yan C, Han J (2011) Formulation and evaluation of coupling effects between DOF motions of hydraulically driven 6 DOF parallel manipulator. Iran J Sci Technol, Trans Mech Eng 35(2):143–157

    Google Scholar 

  • Pandilov Z, Dukovski V (2014) Comparison of the characteristics between serial and parallel robots. Acta Technica Corviniensis-Bulletin of Engineering, Tome VII, Fascicule 1 (January–March), 143–160. ISSN:2067–3809

  • Pashkevich A, Chablat D, Wenger P (2009) Stiffness analysis of overconstrained parallel manipulators. J Mech Mach Theory 44(5):966–982

    Article  MATH  Google Scholar 

  • Patel YD, George PM (2012) Parallel manipulators applications—a survey. Modern Mech Eng 2:57–64

    Article  Google Scholar 

  • Piras G, Cleghorn WL, Mills JK (2004) Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible links. Mech Mach Theory 40(7):849–862

    Article  MATH  Google Scholar 

  • Rao SS (2007) Vibration of continuous systems. Wiley, New York

    Google Scholar 

  • Rauf A, Kim S-G, Ryu J (2004) A new measurement device for complete parameter identification of parallel manipulators with partial pose measurements. In: The 4th Chemnitz parallel kinematics seminar. Chemnitz, Germany, pp 89–106

  • Seifried R, Burkhardt M, Held A (2013) Trajectory control of serial and parallel flexible manipulators using model inversion. Multibody Dyn 28:53–75

    Article  MathSciNet  MATH  Google Scholar 

  • Song J-I, Mou J, King C (1999) Error modeling and compensation for parallel kinematic machines. In: Parallel kinematic machines, advanced manufacturing series. Springer, London, pp 171–187

  • Staicu S (2009a) Power requirement comparison in the 3-RPR planar parallel robot dynamics. Mech Mach Theory 44(5):1045–1057

    Article  MATH  Google Scholar 

  • Staicu S (2009b) Inverse dynamics of the 3-PRR planar parallel robot. Robot Auton Syst 57(5):556–563

    Article  Google Scholar 

  • Staicu S (2009c) Power requirement comparison in the 3-RPR planar parallel robot dynamics. Mech Mach Theory 44:1045–1057

    Article  MATH  Google Scholar 

  • Staicu S (2013) Joint forces in dynamics of the 3–RRR planar parallel robot. Int J Mech Robot 1(4):283–300

    Article  MathSciNet  Google Scholar 

  • Staicu S, Chablat D (2012) Internal joint forces in dynamics of a 3-PRP planar parallel robot. Proc Rom Acad, Ser A 13(3):235–242

    MathSciNet  Google Scholar 

  • Staicu S, Carp-Ciocardia DC, Codoban A (2007) Kinematics modelling of a planar parallel robot with prismatic actuators. UPB Sci Bull, Series D 69:3–14

    Google Scholar 

  • Sudhakar U, Srinvas J (2013) A stiffness index prediction approach for 3-RPR planar parallel linkage. Int J Eng Res Technol 2(9):2747–2751

    Google Scholar 

  • Tsai LW, Joshi S (2001) Comparison study of architectures of four 3 degree-of-freedom translational parallel manipulators. In: Proceedings of the 2001 IEEE Seoul, Korea, international conference on robotics and automation

  • Viliani NS, Zohoor H, Kargarnovin MH (2012) Vibration analysis of a new type of compliant mechanism with flexible-link using perturbation theory. Math Prob Eng 1–19, Article ID 857064. doi:10.1155/2012/857064

  • Wavering AJ (1999) Parallel kinematic machine research at NIST: past, present and future. In: Boër CR, Molinari-Tosatti L, Smith KS (eds) Parallel kinematic machines, advanced manufacturing series. Springer, Berlin, pp 17–31

  • Williams RL, Joshi AR (1999) Planar parallel 3-RPR manipulator. In: Proceedings of the sixth conference on applied mechanisms and robotics, Cincinnati OH

  • Wu J, Wang JS, Wang LP, You Z (2010a) Performance comparison of three planar 3-DOF parallel manipulators with 4-RRR, 3-RRR and 2-RRR structures. Mechatronics 20(4):510–517

    Article  MathSciNet  Google Scholar 

  • Wu J, Wang JS, Wang LP (2010b) A comparison study of two planar 2-DOF parallel mechanisms: one with 2-RRR and the other with 3-RRR structures. Robotica 28(10):937–942

    Article  Google Scholar 

  • Wu J, Wang JS, You Z (2011) A comparison study on the dynamics of planar 3-DOF 4-RRR, 3-RRR and 2-RRR parallel manipulators. Robot Comput Integr Manuf 27:150–156

    Article  Google Scholar 

  • Wu J, Li T, Wang JS, Wang LP (2013) Performance analysis and comparison of planar 3-DOF parallel manipulators with one and two additional branches. J Intell Robot Syst 72(1):73–82

    Article  Google Scholar 

  • Zhang D, Gao Z, Su X, Li J (2012) A comparison study of three degree-of-freedom parallel robotic machine tools with/without actuation redundancy. Int J Comput Integr Manuf 5(3):230–247

    Article  Google Scholar 

  • Zhao Y, Gao F (2009) Dynamic performance comparison of the 8PSS redundant parallel manipulator and its non-redundant counterpart—the 6PSS parallel manipulator. Mech Mach Theory 44(9):991–1008

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Ebrahimi.

Appendix

Appendix

Mass matrix:

$${\mathbf{M}}_{\rho \rho } = m\left[ {\begin{array}{*{20}c} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \\ \end{array} } \right] \in R^{n \times n} ,\,\,\,{\mathbf{M}}_{\theta \theta } = \left( {I_{c} + \frac{{ml^{2} }}{3}} \right)\left[ {\begin{array}{*{20}c} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \\ \end{array} } \right] + m\left[ {\begin{array}{*{20}c} {l\rho_{1} + \rho_{1}^{2} } & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & {l\rho_{n} + \rho_{n}^{2} } \\ \end{array} } \right] \in R^{n \times n}$$
$${\mathbf{M}}_{{X_{\text{p}} X_{\text{p}} }} = \left[ {\begin{array}{*{20}c} {m_{\text{p}} } & 0 & 0 \\ 0 & {m_{\text{p}} } & 0 \\ 0 & 0 & {I_{\text{p}} } \\ \end{array} } \right], \quad {\mathbf{M}}_{\eta \eta } = m\left[ {\begin{array}{*{20}c} {{\hat{\mathbf{M}}}} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & {{\hat{\mathbf{M}}}} \\ \end{array} } \right] \in R^{nr \times nr} , \quad {\hat{\mathbf{M}}} = \left[ {\begin{array}{*{20}c} {\int_{0}^{1} {\psi_{1}^{2} {\text{d}}\xi } } & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & {\int_{0}^{1} {\psi_{r}^{2} {\text{d}}\xi } } \\ \end{array} } \right] \in R^{r \times r}$$
$${\mathbf{M}}_{\eta \theta } = ml\left[ {\begin{array}{*{20}c} {{\hat{\mathbf{M}}}_{1} } & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & \ddots & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {{\hat{\mathbf{M}}}_{n} } \\ \end{array} } \right] \in R^{nr \times n} , \quad {\hat{\mathbf{M}}}_{i} = \left[ {\begin{array}{*{20}c} {M_{1i} } \\ \vdots \\ {M_{ri} } \\ \end{array} } \right],\,\,M_{ji} = \int_{0}^{1} {\psi_{j} \xi {\text{d}}\xi } + \frac{{\rho_{i} \int_{0}^{1} {\psi_{j} {\text{d}}\xi } }}{l}$$

Stiffness matrix:

$${\mathbf{K}}_{\rho \rho } = - m\left[ {\begin{array}{*{20}c} {\dot{\theta }_{1}^{2} } & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & {\dot{\theta }_{n}^{2} } \\ \end{array} } \right] \in R^{n \times n} ,\quad {\mathbf{K}}_{\theta \rho } = 2m\left[ {\begin{array}{*{20}c} {\dot{\rho }_{1} \dot{\theta }_{1} } & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & {\dot{\rho }_{n} \dot{\theta }_{n} } \\ \end{array} } \right] \in R^{n \times n}$$

\(\,\,{\mathbf{K}}_{\eta \eta } = \frac{\text{EI}}{{l^{3} }}\left[ {\begin{array}{*{20}c} {{\hat{\mathbf{K}}}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & \ddots & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {{\hat{\mathbf{K}}}} \\ \end{array} } \right] \in R^{nr \times nr} ,{\hat{\mathbf{K}}} = \left[ {\begin{array}{*{20}c} {\int_{0}^{1} {\psi_{1}^{{{\prime \prime }2}} {\text{d}}\xi } } & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & {\int_{0}^{1} {\psi_{r}^{{{\prime \prime }2}} {\text{d}}\xi } } \\ \end{array} } \right] \in R^{r \times r} ,\)

Coriolis and centrifugal forces:

$$F_{c\rho } = \left[ {\begin{array}{*{20}c} {(0.5\,{\text{ml}})\dot{\theta }_{1}^{2} + \sum\limits_{j = 1}^{r} {m\dot{\eta }_{1j} \dot{\theta }_{1} \int_{0}^{1} {\psi_{j} {\text{d}}\xi } } } \\ \vdots \\ {(0.5\,{\text{ml}})\dot{\theta }_{n}^{2} + \sum\limits_{j = 1}^{r} {m\dot{\eta }_{nj} \dot{\theta }_{n} \int_{0}^{1} {\psi_{j} {\text{d}}\xi } } } \\ \end{array} } \right],\,\quad F_{c\theta } = - m\left[ {\begin{array}{*{20}c} {l\dot{\rho }_{1} \dot{\theta }_{1} + \sum\limits_{j = 1}^{r} {\dot{\rho }_{1} \dot{\eta }_{1j} \int_{0}^{1} {\psi_{j} {\text{d}}\xi } } } \\ \vdots \\ {l\dot{\rho }_{n} \dot{\theta }_{n} + \sum\limits_{j = 1}^{r} {\dot{\rho }_{n} \dot{\eta }_{nj} \int_{0}^{1} {\psi_{j} {\text{d}}\xi } } } \\ \end{array} } \right],$$
$$F_{c\eta } = \left[ {\dot{\rho }_{1} \dot{\theta }_{1} \int_{0}^{1} {\psi_{1} {\text{d}}\xi } \cdots \dot{\rho }_{1} \dot{\theta }_{1} \int_{0}^{1} {\psi_{r} {\text{d}}\xi \cdots \dot{\rho }_{n} \dot{\theta }_{n} \int_{0}^{1} {\psi_{1} {\text{d}}\xi \cdots \dot{\rho }_{n} \dot{\theta }_{n} \int_{0}^{1} {\psi_{r} {\text{d}}\xi } } } } \right]^{\text{T}} \in R^{1 \times nr}$$

Jacobian matrix:

$${\mathbf{J}}_{\varGamma 1}^{T} = \left[ {\begin{array}{*{20}c} {\cos \theta_{1} } & {\sin \theta_{1} } & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & {\cos \theta_{n} } & {\sin \theta_{n} } \\ \end{array} } \right] \in R^{n \times 2n} , \quad {\mathbf{J}}_{\varGamma 2}^{T} = \left[ {\begin{array}{*{20}c} { - s2_{1} } & {c2_{1} } & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & { - s2_{n} } & {c2_{n} } \\ \end{array} } \right] \in R^{n \times 2n}$$

where \(s2_{i} = \left( {\rho_{i} + l} \right) \sin \theta_{i} + \cos \theta_{i} \sum\nolimits_{j = 1}^{r} {\eta_{ij} \psi_{j} \left( 1 \right)} \,\,{\text{and }}c2_{i} = \left( {\rho_{i} + l} \right) \cos \theta_{i} - \sin \theta_{i} \sum\nolimits_{j = 1}^{r} {\eta_{ij} \psi_{j} \left( 1 \right)} \,\,\)

$${\mathbf{J}}_{\varGamma 3}^{T} = \left[ {\begin{array}{*{20}c} { - 1} & 0 & \cdots & { - 1} & 0 \\ 0 & { - 1} & \cdots & 0 & { - 1} \\ {s3_{1} } & { - c3_{1} } & \cdots & {s3_{n} } & { - c3_{n} } \\ \end{array} } \right] \in R^{3 \times 2n} ,\,\,$$

where \(s3_{i} = r\sin (\phi_{i} + \phi_{p} ),c3_{i} = r\cos (\phi_{i} + \phi_{p} )\)

$${\mathbf{J}}_{\varGamma 4}^{T} = \left[ {\begin{array}{*{20}c} {{\hat{\mathbf{J}}}_{1} } & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & \ddots & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {{\hat{\mathbf{J}}}_{n} } \\ \end{array} } \right] \in R^{nr \times 2n} ,{\hat{\mathbf{J}}}_{i} = \left[ {\begin{array}{*{20}c} { - s4_{i1} } & {c4_{i1} } \\ \vdots & \vdots \\ { - s4_{ir} } & {c4_{ir} } \\ \end{array} } \right],\,\,\,\,s4_{ij} = \sin \theta_{i} \cdot \psi_{j} (1),\,\,\,c4_{ij} = \cos \theta_{i} \cdot \psi_{j} (1)$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, S., Eshaghiyeh-Firoozabadi, A. Dynamic Performance Evaluation of Serial and Parallel RPR Manipulators with Flexible Intermediate Links. Iran J Sci Technol Trans Mech Eng 40, 169–180 (2016). https://doi.org/10.1007/s40997-016-0019-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-016-0019-3

Keywords

Navigation