Skip to main content
Log in

Dynamic Market-Based Generation-Transmission Expansion Planning Considering Fixed Series Compensation Allocation

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents a market-based multi-period generation-transmission expansion planning (GTEP) along with fixed series compensation (FSC) allocation. FSCs can dispatch power more efficiently over the transmission network as well as trading opportunities for market participants and thus improve market surplus and reduce the total transmission investment. The proposed planning may accordingly enhance network efficiency and improve social welfare for all participants. The proposed model is structured as a mixed integer linear programming (MILP) problem. The CPLEX solver, as a commercial solver, is used to solve this MILP problem. Moreover, to find a reliable and viable optimal topology, N  1 security criterion is employed through the proposed model. This criterion is used to take into account any unanticipated operating condition due to unexpected transmission line failures. The proposed model is applied to the Garver and IEEE 24-bus systems as well-known systems to show the effectiveness of FSC in dynamic GTEP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

\(p_{{D_{nm} }}^{tie}\) :

Power consumed by mth block of nth consumer in scenario i, condition e, and year t

\(p_{{G_{h j} }}^{tie}\) :

Power generated by jth block of hth generator in scenario i, condition e, and year t

\(f_{pq,r}^{tie}\) :

Power flowed in rth line of corridor p − q in scenario i, condition e, and year t

\(f_{pq}^{tie0}\) :

Power flowed in existing line p − q in scenario i, condition e, and year t

\(\theta_{p}^{tie}\) :

The angel at bus p in scenario i, condition e, and year t

\(P_{{G_{h} }}^{tie}\) :

Power generated by hth generator in scenario i, condition e, and year t

\(P_{{D_{n} }}^{tie}\) :

Power consumed by nth demand center in scenario i, condition e, and year t

\(\delta_{pq,a}^{tie0}\) :

Variable used in linearization of power flow in the existing lines, scenario i, condition e, and year t

\(\delta_{pq,r,a}^{tie}\) :

Variable used in linearization of power flow in the rth prospective lines, scenario i, condition e, and year t

\(n_{pq,r}^{t}\) :

Binary variable presenting rth transmission lines installed in corridor p − q and year t

\(y_{hj}^{t}\) :

Binary variable presenting jth generating unit installed in bus i and year t

\(u_{pq,r,a}^{t}\) :

Binary variable presenting ath FSC installed in the rth prospective transmission line and year t

\(u_{pq,a}^{t0}\) :

Binary variable presenting ath FSC installed in the existing transmission line between node p − q and year t

\(\omega^{i}\) :

The weighting factor of scenario i

\(\mu_{{D_{nm} }}^{ti}\) :

Bid for mth block of nth demand in scenario i and year t

\(\mu_{{G_{hj} }}^{ti}\) :

Offer for jth block of hth generator scenario i and year t

\(c_{pq,r}\) :

Transposed vector of the investment costs of new transmission lines

\(c_{hj}\) :

Transposed vector of the investment costs of new generating units

\(\alpha\) :

Adjustment factor for costs of planning and operation

\(x_{pq}\) :

Reactance of corridor p − q

\(n_{pq}^{0}\) :

Transmission line in the initial topology

\(M\) :

Big enough positive constant

\(f_{pq}^{\hbox{max} }\) :

Maximum power flow in one of the lines in corridor p − q

\(p_{{{\text{G}}_{hj} }}^{\hbox{max} }\) :

Size of jth block of hth generator

\(p_{{G_{h} }}^{\hbox{max} }\) :

Maximum generation of hth generator

\(k_{pq}^{e}\) :

A binary parameter presenting contingency in condition e

\(U_{e}\) :

A binary parameter of allocation FSC for existing lines

\(U_{p}\) :

A binary parameter of allocation FSC for candidate lines

\(p_{a}\) :

Compensation level of ath FSC for corresponding lines

\(C_{a}\) :

Ratio of \(a\)th FSC’s investment cost to investment cost of corresponding line

\(I\) :

Discount rate

\(t^{0}\) :

Base year

\(E\) :

Set of all system conditions, i.e., e 0 normal condition, e 1 contingency occurred on existing lines, and e 2 contingency occurred on prospective lines

\(e_{1}^{0}\) :

Set of all corridors that includes contingency in existing lines

\(e_{1}\) :

Set of all corridors that includes contingency in prospective lines

\(\gamma_{c}\) :

Set of all scenarios

\(\gamma_{\text{N}}\) :

Set of all nodes of network

\(\gamma_{k}\) :

Set of all transmission lines, existing and prospective

\(\gamma_{r}\) :

Set of all prospective transmission lines in corridor p − q

\(\gamma_{h}\) :

Set of all blocks of hth generating unit

\(\gamma_{\text{G}}\) :

Set of indices of the generating units

\(\gamma_{n}\) :

Set of all blocks of nth demand

\(\gamma_{\text{D}}\) :

Set of indices of the demands

\(A\) :

Set of all candidate FSCs indexed by a

\(T\) :

Set of all years of the planning horizon

References

  • Aguado JA, de la Torre S, Contreras J, Conejo AJ, Martínez A (2012) Market-driven dynamic transmission expansion planning. Electr Power Syst Res 82:88–94. doi:10.1016/j.epsr.2011.09.001

    Article  Google Scholar 

  • Akbari T, Tavakoli-Bina M (2014) A linearized formulation of AC multi-year transmission expansion planning: a mixed-integer linear programming approach. Electric Power Systems Research 114:93–100. doi:10.1016/j.epsr.2014.04.013

    Article  Google Scholar 

  • Akbari T, Rahimikian A, Kazemi A (2011) A multi-stage stochastic transmission expansion planning method. Energy Convers Manag 52:2844–2853. doi:10.1016/j.enconman.2011.02.023

    Article  Google Scholar 

  • Alguacil N, Motto AL, Conejo AJ (2003) Transmission expansion planning: a mixed-integer LP approach. IEEE Trans Power Syst 18:1070–1077. doi:10.1109/TPWRS.2003.814891

    Article  Google Scholar 

  • Blanco GA, Olsina FG, Ojeda OA, Garses FF (2009) Transmission expansion planning under uncertainty—the role of FACTS in providing strategic flexibility. In: IEEE Bucharest PowerTech Conference, pp 1–8. doi: 10.1109/PTC.2009.5282080

  • Braga ASD, Saraiva JT (2005) A multiyear dynamic approach for transmission expansion planning and long-term Marginal costs computation. IEEE Trans Power Syst 20:1631–1639. doi:10.1109/TPWRS.2005.852121

    Article  Google Scholar 

  • Brooke A, Kendrick D, Meeraus A, Raman R (2003) GAMS/CPLEX 9.0. User Notes, GAMS Development Corp., Washington, DC, 2003

  • Buygi MO, Balzer G, Shanechi HM, Shahidehpour M (2004a) Market-based transmission expansion planning. IEEE Trans Power Syst 19:2060–2067. doi:10.1109/TPWRS.2004.836252

    Article  Google Scholar 

  • Buygi MO, Shahidehpour M, Shanechi HM, Balzer G (2004) Market based transmission planning under uncertainties. In: International conference on probabilistic methods applied to power systems 2004, pp 563–568

  • Buygi MO, Balzer G, Shanechi HM, Shahidehpour M (2004) Market based transmission expansion planning: fuzzy risk assessment. In: Proceedings of the 2004 IEEE international conference on electric utility deregulation, restructuring and power technologies, vol 2, pp 427–432. doi:10.1109/DRPT.2004.1337997

  • Buygi MO, Balzer G, Shanechi HM, Shahidehpour M (2004) Market based transmission expansion planning: stakeholders’ desires. In: Proceedings of the 2004 IEEE international conference on electric utility deregulation, restructuring and power technologies, vol 2, pp 433–438. doi:10.1109/DRPT.2004.1337998

  • Choi J, El-Keib AA, Tran T (2005a) A fuzzy branch and bound-based transmission system expansion planning for the highest satisfaction level of the decision maker. IEEE Trans Power Syst 20:476–484. doi:10.1109/TPWRS.2004.840446

    Article  Google Scholar 

  • Choi J, Tran T, El-Keib AA, Thomas R, Oh H, Billinton R (2005b) A method for transmission system expansion planning considering probabilistic reliability criteria. IEEE Trans Power Syst 20:1606–1615. doi:10.1109/TPWRS.2005.852142

    Article  Google Scholar 

  • Da Silva EL, Gil HA, Areiza JM (2000) Transmission network expansion planning under an improved genetic algorithm. IEEE Trans Power Syst 16:930–931. doi:10.1109/59.871750

    Article  Google Scholar 

  • de la Torre S, Conejo AJ, Contreras J (2008) Transmission expansion planning in electricity markets. IEEE Trans Power Syst 23:238–248. doi:10.1109/TPWRS.2007.913717

    Article  Google Scholar 

  • Escobar AHH, Gallego RAA, Romero R (2004) Multistage and coordinated planning of the expansion of transmission systems. IEEE Trans Power Syst 19:735–744. doi:10.1109/TPWRS.2004.825920

    Article  Google Scholar 

  • Fang R, Hill DJ (2003) A new strategy for transmission expansion in competitive electricity markets. IEEE Trans Power Syst 18:374–380. doi:10.1109/TPWRS.2002.807083

    Article  Google Scholar 

  • Garver L (1970) Transmission network estimation using linear programming. IEEE Trans Power Appar Syst PAS 89:1688–1697. doi:10.1109/TPAS.1970.292825

    Article  Google Scholar 

  • Georgilakis PS (2010) Market-based transmission expansion planning by improved differential evolution. Electr Power Energy Syst 32:450–456. doi:10.1016/j.ijepes.2009.09.019

    Article  Google Scholar 

  • Hooshmand R, Hemmati R, Parastegari M (2012) Combination of AC transmission expansion planning and reactive power planning in the restructured power system. Energy Convers Manag 55:26–35. doi:10.1016/j.enconman.2011.10.020

    Article  Google Scholar 

  • Kandil MS, El-Debeiky SM, Hasanien NE (2001) A hybrid mathematical and rule-based system for transmission network planning in a deregulated environment. Power Eng Soc Summer Meet 3:1451–1456. doi:10.1109/PESS.2001.970289

    Article  Google Scholar 

  • Khodaei A, Shahidehpour M, Kamalinia S (2010) Transmission switching in expansion planning. Power Syst IEEE Trans 25:1722–1733. doi:10.1109/TPWRS.2009.2039946

    Article  Google Scholar 

  • Koltsaklis NE, Georgiadis MC (2015) A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints. Appl Energy 158:310–331. doi:10.1016/j.apenergy.2015.08.054

    Article  Google Scholar 

  • Lee STY, Hicks KL, Hnyilicza E (1974) Transmission expansion by branch-and-bound integer programming with optimal cost–capacity curves. Power Appar Syst IEEE Trans PAS 93:1390–1400. doi:10.1109/TPAS.1974.293869

    Article  Google Scholar 

  • Lu M, Dong ZY, Saha TK (2005) A framework for transmission planning in a competitive electricity market. In: Transmission and distribution conference and exhibition: Asia and Pacific, IEEE/PES, 2005, pp 1–6. doi:10.1109/TDC.2005.1547025

  • Miasaki CT, Romero R (2007) A specialized genetic algorithm applied to transmission expansion planning model with allocation of series compensation devices. Controle Autom 18:210–222. doi:10.1590/S0103-17592007000200007

    Article  Google Scholar 

  • Orfanos GA, Georgilakis PS, Hatziargyriou ND (2013) Transmission expansion planning of systems with increasing wind power integration. IEEE Trans Power Syst 28:1355–1362. doi:10.1109/TPWRS.2012.2214242

    Article  Google Scholar 

  • Pourakbari-Kasmaei M, Rashidi-Nejad M (2011) An effortless hybrid method to solve economic load dispatch problem in power systems. Energy Convers Manag 52:2854–2860. doi:10.1016/j.enconman.2011.02.018

    Article  Google Scholar 

  • Rahmani M, Romero R, Rider MJ (2013a) Strategies to reduce the number of variables and the combinatorial search space of the multistage transmission expansion planning problem. IEEE Trans Power Syst 28:2164–2173. doi:10.1109/TPWRS.2012.2223241

    Article  Google Scholar 

  • Rahmani M, Vinasco G, Rider MJ, Romero R, Pardalos PM (2013b) Multistage transmission expansion planning considering fixed series compensation allocation. IEEE Trans Power Syst 28:3795–3805. doi:10.1109/TPWRS.2013.2266346

    Article  Google Scholar 

  • Roh JH, Shahidehpour M, Wu L (2009) Market-based generation and transmission planning with uncertainties. Power Syst IEEE Trans 24:1587–1598. doi:10.1109/TPWRS.2009.2022982

    Article  Google Scholar 

  • Romero R, Monticelli A, Garcia A, Haffner S (2002) Test systems and mathematical models for transmission network expansion planning. IEE Proc Gener Transm Distrib 149:27–36. doi:10.1049/ip-gtd:20020026

    Article  Google Scholar 

  • Sanchez-Martin P, Ramos A, Alonso JF (2005) Probabilistic midterm transmission planning in a liberalized market. IEEE Trans Power Syst 20:2135–2142. doi:10.1109/TPWRS.2005.856984

    Article  Google Scholar 

  • Seddighi AH, Ahmadi-Javid A (2015) Integrated multiperiod power generation and transmission expansion planning with sustainability aspects in a stochastic environment. Energy 86:9–18. doi:10.1016/j.energy.2015.02.047

    Article  Google Scholar 

  • Shayeghi H, Jalilzadeh S, Mahdavi M, Hadadian H (2008) Studying influence of two effective parameters on network losses in transmission expansion planning using DCGA. Energy Convers Manag 49:3017–3024. doi:10.1016/j.enconman.2008.06.013

    Article  Google Scholar 

  • Shrestha GB, Fonseka PAJ (2004) Congestion-driven transmission expansion in competitive power markets. IEEE Trans Power Syst 19:1658–1665. doi:10.1109/TPWRS.2004.831701

    Article  Google Scholar 

  • Sun H, Yu DC (2000) A multiple-objective optimization model of transmission enhancement planning for independent transmission company (ITC). Power Eng Soc Summer Meet IEEE 4:2033–2038. doi:10.1109/PESS.2000.866959

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zeinaddini-Meymand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeinaddini-Meymand, M., Pourakbari-Kasmaei, M., Rahmani, M. et al. Dynamic Market-Based Generation-Transmission Expansion Planning Considering Fixed Series Compensation Allocation. Iran J Sci Technol Trans Electr Eng 41, 305–317 (2017). https://doi.org/10.1007/s40998-017-0034-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-017-0034-4

Keywords

Navigation