Skip to main content
Log in

Vortex Dissipation Using a Hydraulic-Based Anti-Vortex Device at Intakes

  • Research paper
  • Published:
International Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

In the present research, dissipating free surface vortices over the intakes by designing a hydraulic anti-vortex method is studied experimentally. In this method, an up-stream submerged water jet is used as a hydraulic-based anti-vortex mechanism. The imposed jet acts as a point source of external momentum to the formed free surface area. The added momentum changes the hydrodynamic balance of the vortex zone, and leads to instability and disability of the vortex to form and develop. Experiments were conducted on a projected horizontal pipe intake to investigate the efficiency of the proposed anti-vortex hydraulic device on dissipating and preventing formation of free surface vortices. Results show that the efficiency of the imposed jet is dependent on the jet linear momentum and vertical distance between the nozzle and intake positions. Moreover, the critical submergence of the intake can potentially reduce up to the nozzle submergence in which less than 10% of the jet momentum is required by decreasing nozzle submergence about 50%. Finally, an empirical equation is suggested to predict the critical submergence of the intake with respect to the jet linear momentum and the nozzle submergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Suerich-Gulick F, Gaskin S, Villeneuve M, Parkinson É. (2014) Characteristics of free surface vortices at low-head hydropower intakes. ASCE J Hydraul Eng 140:291–299

    Article  Google Scholar 

  2. Knauss J (1987) “Swirling flow problems at intakes”, IAHR hydraulic structures design manual, vol 1, Balkema, Rotterdam, pp 57–76

    Google Scholar 

  3. Möller G, Detert M, Boes RM (2015) Vortex-Induced Air Entrainment Rates at Intake. ASCE J Hydraul Eng 141(11):1–9

    Article  Google Scholar 

  4. Ansar M, Nakato T (2001) Experimental study of 3D pump-intake flows with and without cross flow. ASCE J Hydraul Eng 127(10):825–834

    Article  Google Scholar 

  5. Khodashenas SR, Roshan R, Sarkardeh H, Azamathulla H.Md (2010) Vortex study at orifice spillways of Karun III dam. J Dam Eng XXI(2):131–142

    Google Scholar 

  6. Sarkardeh H, Zarrati AR, Roshan R (2010) Effect of intake head wall and trash rack on vortices. J Hydraul Res 48(1):108–112. doi:10.1080/00221680903565952

    Article  Google Scholar 

  7. Sarkardeh H, Zarrati AR, Jabbari E, Roshan R (2012) Discussion of prediction of intake vortex risk by nearest neighbors modeling. ASCE J Hydraul Eng 137(6):701–705. doi:10.1061/(ASCE)HY.1943-7900.0000344

    Google Scholar 

  8. Sarkardeh H, Jabbari E, Zarrati AR, Tavakkol S (2013) Velocity field in a reservoir in the presence of an air-core vortex. ICE J Water Manag 164(4):193–200. doi:10.1680/wama.13.00046

    Google Scholar 

  9. Taghvaei SM, Roshan R, Safavi Kh, Sarkardeh H (2012) Anti-vortex structures at hydropower dams. Int J Phys Sci 7(28):5069–5077. doi:10.5897/IJPS12.387

    Article  Google Scholar 

  10. Yildirim N, Eyüpoğlu A, Tastan K (2012) Critical submergence for dual rectangular intakes. ASCE J Energy Eng 138(4):237–245

    Article  Google Scholar 

  11. Azarpira M, Sarkardeh H, Tavakkol S, Roshan R, Bakhshi H (2014) Vortices in dam reservoir: a case study of Karun III Dam. Sādhanā 39(5):1201–1209

    Google Scholar 

  12. Suerich-Gulick F, Gaskin S, Villeneuve M, Parkinson É. (2014) Free surface intake vortices: Theoretical model and measurements. J Hydraul Res 52(4):502–512

    Article  Google Scholar 

  13. Padmanabhan M (1984) Air ingestion due to free-surface vortices. J Hydraul Eng 12:1855–1859. doi:10.1061/(ASCE)0733-9429(1984)110:12(1855)

    Article  Google Scholar 

  14. Keller J, Möller G, Boes RM (2014) PIV measurements of air-core intake vortices. J Flow Meas Instrum 40:74–81

    Article  Google Scholar 

  15. Pfister M, Chanson H (2014) Two-phase air-water flows: Scale effects in physical modeling. J Hydrodyn 26(2):291–298

    Article  Google Scholar 

  16. Tastan K, Yildirim N (2014) Effects of Froude, Reynolds, and Weber numbers on an air-entraining vortex. J Hydraul Res 52(3):421–425

    Article  Google Scholar 

  17. Fazel Z, Fazelian M, Sarkardeh H (2017) Development of a device for measuring air–water flow characteristics. Int J Civil Eng 15(2):195–203. doi:10.1007/s40999-016-0101-7

    Article  Google Scholar 

  18. Monshizadeh M, Tahershamsi A, Rahimzadeh H, Sarkardeh H (2017) Experimental investigation of dynamics of the air-core vortices and estimating the air entrainment rate at a horizontal intake. Modares Mech Eng 17(8):59–76 (in Persian)

    Google Scholar 

  19. Suerich-Gulick F, Gaskin SJ, Villeneuve M, Parkinson É (2014) Free surface intake vortices: scale effects due to surface tension and viscosity. J Hydraul Res 52(4):513–522

    Article  Google Scholar 

  20. Khadem-Rabe B, Ghoreishi-Najafi SH, Sarkardeh H (2016) Numerical simulation of anti-vortex devices at water intakes. ICE J Water Manag. doi:10.1680/jwama.16.00051

    Google Scholar 

  21. Sarkardeh H, Zarrati AR, Jabbari E, Marosi M (2014) Numerical simulation and analysis of flow in a reservoir in the presence of vortex. J Eng Appl Comput Fluid Mech 8(4):598–608. doi:10.1080/19942060.2014.11083310

    Google Scholar 

  22. Naghian M, Lashkarbolok M, Jabbari E (2017) Numerical simulation of turbulent flows using a least squares based meshless method. Int J Civil Eng 15(1):77–87. doi:10.1007/s40999-016-0087-1

    Article  Google Scholar 

  23. Granger R (1966) Steady 3-dimentional vortex flow. J Fluid Mech 25(3):557–576

    Article  MATH  Google Scholar 

  24. Carriveau R, Kopp G, Baddour R (2009) Stretching-sustained intake vortices. J Hydraul Res 47(4):486–491

    Article  Google Scholar 

  25. Borghei SM, Kabiri-Samani AR (2010) Effect of anti-vortex plates on critical submergence at a vertical intake. J Sci Iran 17(2):89–95

    Google Scholar 

  26. Trivellato F (2010) Anti-vortex devices: laser measurements of the flow and functioning. J Opt Lasers Eng 48(5):589–599

    Article  Google Scholar 

  27. Sohn CH, Ju NG, Gowda BHL (2009) Draining from cylindrical tanks with vane-type suppressors, a PIV study. J Vis 12(4):347–360

    Article  Google Scholar 

  28. Mahyari MN, Karimi H, Naseh H, Mirshams M (2010) Numerical and experimental investigation of vortex breaker effectiveness on improvement in launch vehicle ballistic parameters. J Mech Sci Technol 24(10):1997–2006

    Article  Google Scholar 

  29. Amiri SM, Zarrati AR, Roshan R, Sarkardeh H (2011) Surface vortex prevention at power intakes by horizontal plates. ICE J Water Manag 164(4):193–200. doi:10.1680/wama.1000009

    Google Scholar 

  30. Monshizadeh M, Tahershamsi A, Rahimzadeh H, Sarkardeh H (2017) Comparison between hydraulic and structural based anti-vortex methods at intakes. Eur Phys J Plus 132:329. doi:10.1140/epjp/i2017-11608-4

    Article  Google Scholar 

  31. Odgaard JA (1986) Free-surface air-core vortex. ASCE J Hydraul Eng 112(7):610–620

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincerely appreciations to the assistance provided by Department of Hydraulic Engineering, Water Research Institute of Iran, and Laboratory of Fluid Mechanic of Mechanical Engineering Department (Amirkabir University of Technology) for providing all needed laboratorial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Tahershamsi.

Ethics declarations

Funding

No funding information available.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monshizadeh, M., Tahershamsi, A., Rahimzadeh, H. et al. Vortex Dissipation Using a Hydraulic-Based Anti-Vortex Device at Intakes. Int J Civ Eng 16, 1137–1144 (2018). https://doi.org/10.1007/s40999-017-0266-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40999-017-0266-8

Keywords

Navigation