Skip to main content
Log in

Comparison of CFRP and GFRP Wraps on Reducing Seismic Damage of Deficient Reinforced Concrete Structures

  • Research paper
  • Published:
International Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

The effectiveness of glass/carbon fibre reinforced polymer (GFRP/CFRP) wraps at plastic hinges has been confirmed; however, their respective effectiveness on reducing seismic damage of deficient reinforced concrete structures has hardly been compared. The current study aims at this comparison, providing some useful information to realise the better FRP for confinement retrofitting of reinforced concrete structures poorly confined due to deficient transverse reinforcement. Four- and eight-storey poorly confined reinforced concrete frames were selected to represent low- and mid-rise building structures, respectively. These deficient frames were then strengthened by CFRP/GFRP wraps via external confinement. Inelastic time history and cumulative damage analyses of the original, CFRP- and GFRP-retrofitted frames were performed. The damages of CFRP- and GFRP-retrofitted frames were compared with each other and with the damage of the original frame. The comparison results show that CFRP and GFRP wraps at plastic hinges substantially reduce damage. More importantly, GFRP wraps are more effective than CFRP wraps by reducing a higher amount of the cumulative damage index. The conclusions can help in deciding on the type of FRP to be used for confinement retrofitting of RC structures poorly confined due to deficient transverse reinforcement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Sheikh SA, Li Y (2007) Design of FRP confinement for square concrete columns. Eng Struct 29:1074–1083. https://doi.org/10.1016/j.engstruct.2006.07.016

    Article  Google Scholar 

  2. Lam L, Teng JG (2003) Design-oriented stress–strain model for FRP-confined concrete. Constr Build Mater 17:471–489. https://doi.org/10.1016/S0950-0618(03)00045-X

    Article  Google Scholar 

  3. Wei Y-Y, Wu Y-F (2012) Unified stress–strain model of concrete for FRP-confined columns. Constr Build Mater 26:381–392. https://doi.org/10.1016/j.conbuildmat.2011.06.037

    Article  MathSciNet  Google Scholar 

  4. Pellegrino C, Modena C (2010) Analytical model for FRP confinement of concrete columns with and without internal steel reinforcement. J Compos Constr 14(6):693–705. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000127

    Article  Google Scholar 

  5. Smith ST, Kim SJ, Zhang H (2010) Behavior and effectiveness of FRP wrap in the confinement of large concrete cylinders. J Compos Constr 14(5):573–582. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000119

    Article  Google Scholar 

  6. Abd El Fattah A (2018) New axial stress–strain model of square concrete columns confined with lateral steel and FRP. Compos Struct 202:731–751. https://doi.org/10.1016/j.compstruct.2018.03.085

    Article  Google Scholar 

  7. Harajli MH, Rteil AA (2004) Effect of confinement using fiber-reinforced polymer or fiber-reinforced concrete on seismic performance of gravity load-designed columns. ACI Struct J 101(1):47–56

    Google Scholar 

  8. Sheikh SA, Yau G (2002) Seismic behavior of concrete columns confined with steel and fiber-reinforced polymers. ACI Struct J 99(1):72–80

    Google Scholar 

  9. Rahai A, Akbarpour H (2014) Experimental investigation on rectangular RC columns strengthened with CFRP composites under axial load and biaxial bending. Compos Struct 108(Supplement C):538–546. https://doi.org/10.1016/j.compstruct.2013.09.015

    Article  Google Scholar 

  10. Zeng JJ, Lin G, Teng JG, Li LJ (2018) Behavior of large-scale FRP-confined rectangular RC columns under axial compression. Eng Struct 174:629–645. https://doi.org/10.1016/j.engstruct.2018.07.086

    Article  Google Scholar 

  11. Cao Y-G, Jiang C, Wu Y-F (2016) Cross-sectional unification on the stress-strain model of concrete subjected to high passive confinement by fiber-reinforced polymer. Polymers 8(5):186–202. https://doi.org/10.3390/polym8050186

    Article  Google Scholar 

  12. Lam L, Teng JG (2003) Design-oriented stress–strain model for FRP-confined concrete in rectangular columns. J Reinf Plast Compos 22(13):1149–1186. https://doi.org/10.1177/0731684403035429

    Article  Google Scholar 

  13. Balsamo A, Colombo A, Manfredi G, Negro P, Prota A (2005) Seismic behavior of a full-scale RC frame repaired using CFRP laminates. Eng Struct 27:769–780. https://doi.org/10.1016/j.engstruct.2005.01.002

    Article  Google Scholar 

  14. Ludovico MD, Prota A, Manfredi G, Cosenza E (2008) Seismic strengthening of an under-designed RC structure with FRP. Earthq Eng Struct Dyn 37:141–162. https://doi.org/10.1002/eqe.749

    Article  Google Scholar 

  15. Ludovico MD, Manfredi G, Mola E, Negro P, Prota A (2008) Seismic behavior of a full-scale RC structure retrofitted using GFRP laminates. J Struct Eng 134(5):810–821. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:5(810)

    Article  Google Scholar 

  16. Garcia R, Hajirasouliha I, Pilakoutas K (2010) Seismic behaviour of deficient RC frames strengthened with CFRP composites. Eng Struct 32:3075–3085. https://doi.org/10.1016/j.engstruct.2010.05.026

    Article  Google Scholar 

  17. Mortezaei A, Ronagh HR, Kheyroddin A (2010) Seismic evaluation of FRP strengthened RC buildings subjected to near-fault ground motions having fling step. Compos Struct 92:1200–1211. https://doi.org/10.1016/j.compstruct.2009.10.017

    Article  Google Scholar 

  18. Eslami A, Ronagh HR (2013) Effect of FRP wrapping in seismic performance of RC buildings with and without special detailing—a case study. Compos B Eng 45(1):1265–1274. https://doi.org/10.1016/j.compositesb.2012.09.031

    Article  Google Scholar 

  19. Cao VV, Ronagh HR (2014) Reducing the seismic damage of reinforced concrete frames using FRP confinement. Compos Struct 118:403–415. https://doi.org/10.1016/j.compstruct.2014.07.038

    Article  Google Scholar 

  20. Ronagh HR, Eslami A (2013) On flexural retrofitting of RC buildings using GFRP/CFRP—a comparative study. Compos Part B 46:188–196. https://doi.org/10.1016/j.compositesb.2012.09.072

    Article  Google Scholar 

  21. ASCE (2000) Prestandard and commentary for the seismic rehabilitation of buildings. Prepared for Federal Emergency Management Agency, FEMA publication no. 356. Federal Emergency Management Agency, Washington, D.C

  22. ICBO (1994) Uniform building code. International Conference of Building Officials, Whittier

    Google Scholar 

  23. ACI (2008) Building code requirements for structural concrete (ACI 318M-08) and commentary. American Concrete Institute, Farmington Hills

    Google Scholar 

  24. Wang L-M, Wu Y-F (2008) Effect of corner radius on the performance of CFRP-confined square concrete columns: test. Eng Struct 30:493–505. https://doi.org/10.1016/j.engstruct.2007.04.016

    Article  Google Scholar 

  25. Luca AD, Nardone F, Matta F, Nanni A, Lignola GP, Prota A (2011) Structural evaluation of full-scale FRP-confined reinforced concrete columns. J Compos Constr 15(1):112–123. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000152

    Article  Google Scholar 

  26. Takeda T, Sozen MA, Nielsen NN (1970) Reinforced concrete response to simulated earthquakes. J Struct Div 96:2557–2573

    Google Scholar 

  27. Sheikh SA, Khoury SS (1993) Confined concrete columns with stubs. ACI Struct J 90(4):414–431

    Google Scholar 

  28. Paulay T, Priestley MJN (eds) (1992) Seismic design of reinforced concrete and masonry buildings. Wiley, New York

    Google Scholar 

  29. Park R, Priestley MJN, Gill WD (1982) Ductility of square-confined concrete columns. J Struct Div 108:929–950

    Google Scholar 

  30. Harajli MH, Hantouche E, Soudki K (2006) Stress-strain model for fiber-reinforced polymer jacketed concrete columns. ACI Struct J 103(5):672–682

    Google Scholar 

  31. Wu G, Wu ZS, Lü ZT (2007) Design-oriented stress–strain model for concrete prisms confined with FRP composites. Constr Build Mater 21(5):1107–1121. https://doi.org/10.1016/j.conbuildmat.2005.12.014

    Article  Google Scholar 

  32. Youssef MN, Feng MQ, Mosallam AS (2007) Stress–strain model for concrete confined by FRP composites. Compos B Eng 38(5–6):614–628. https://doi.org/10.1016/j.compositesb.2006.07.020

    Article  Google Scholar 

  33. Eid R, Paultre P (2017) Compressive behavior of FRP-confined reinforced concrete columns. Eng Struct 132:518–530. https://doi.org/10.1016/j.engstruct.2016.11.052

    Article  Google Scholar 

  34. Campione G, Cannella F, Ferrotto MF, Gianquinto M (2018) Compressive behavior of FRP externally wrapped R.C. column with buckling effects of longitudinal bars. Eng Struct 168:809–818. https://doi.org/10.1016/j.engstruct.2018.05.027

    Article  Google Scholar 

  35. Rocca S, Galati N, Nanni A (2009) Interaction diagram methodology for design of FRP-confined reinforced concrete columns. Constr Build Mater 23(4):1508–1520. https://doi.org/10.1016/j.conbuildmat.2008.06.010

    Article  Google Scholar 

  36. Realfonzo R, Napoli A (2013) Confining concrete members with FRP systems: predictive vs design strain models. Compos Struct 104:304–319. https://doi.org/10.1016/j.compstruct.2013.04.031

    Article  Google Scholar 

  37. Baji H, Ronagh HR, Li CQ (2016) Probabilistic design models for ultimate strength and strain of FRP-confined concrete. J Compos Constr 20(6):04016051. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000704

    Article  Google Scholar 

  38. Baji H (2017) Calibration of the FRP resistance reduction factor for FRP-confined reinforced concrete building columns. J Compos Constr 21(3):04016107. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000769

    Article  Google Scholar 

  39. Chaudat T, Garnier C, Cvejic S, Poupin S, Le Corre M, Mahe M (2005) ECOLEADER project no. 2: seismic tests on a reinforced concrete bare frame with FRP retrofitting-tests report. SEMT/EMSI/RT/05-006/A. CEA, Saclay, (France)

  40. Computers and Structures Inc (2017) SAP2000 version 19.2.0

  41. PEER (2011) PEER ground motion database. http://peer.berkeley.edu/peer_ground_motion_database. Accessed 2018

  42. ASCE (2010) Minimum design loads for buildings and other structures. ASCE/SEI 7-10. American Society of Civil Engineers

  43. Cao VV, Ronagh H, Ashraf M, Baji H (2014) A new damage index for reinforced concrete structures. Earthq Struct 6(6):581–609. https://doi.org/10.12989/eas.2014.6.6.581

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 107.02-2017.18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vui Van Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Cao, V., Pham, S.Q. Comparison of CFRP and GFRP Wraps on Reducing Seismic Damage of Deficient Reinforced Concrete Structures. Int J Civ Eng 17, 1667–1681 (2019). https://doi.org/10.1007/s40999-019-00429-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40999-019-00429-y

Keywords

Navigation