Skip to main content
Log in

Electrochemical sensor for the sensitive detection of o-nitrophenol using graphene oxide-poly(ethyleneimine) dendrimer-modified glassy carbon electrode

  • Original Article
  • Published:
Graphene Technology Aims and scope Submit manuscript

Abstract

The graphene oxide-poly(ethyleneimine) dendrimer (GO–PEI) was synthesized and characterized by SEM, TEM, UV–Vis, FTIR, and Raman spectroscopies and further employed for the fabrication of modified glassy carbon electrode by a drop-cast method. The electrochemical behaviour of ortho-nitrophenol (o-NP) was investigated at the modified electrode, and the results of the investigation revealed that the material exhibited a significant reduction capability towards o-NP, an indication of sensitive electrochemical response. In addition, the modified electrode possessed an excellent electrochemical behaviour towards the redox of o-NP by combining the properties of both GO and PEI. Also, it was found that the o-NP can be separated indigenously from different potentials of nitrosophenol or hydroxyl aminophenol redox reaction. The peak currents showed a linear relationship with the concentration of o-NP in the range of 5–155 μM. The limit of detection of o-NP is low as 0.10 μM characterized by the signal-to-noise characteristics (S/N = 3). The relative standard deviation (RSD) for the three times determination towards o-NP is 0.12 %, which is highly specified, and reveals that this method has good properties such as reproducibility capability, selectivity, repeatability, and stability. Hence, the present GO–PEI-based o-NP sensors proved to be endeavouring for a broad range of applications related to the detection of trace amounts of phenolic compounds. In addition, the material was successfully employed for the treatment of industrially contaminated water during the removal of heavy metals (Fe3+, Ni2+, Cu2+, Pb2+, and Zn2+ ions).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 3
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wang P, Xiao J, Liao A, Li P, Guo M, Xia Y, Li Z, Hiang X, Huang W (2015) Electrochemical determination of 4-nitrophenol using uniform nanoparticle film electrode of glass carbon fabricated facilely by square wave potential pulses. Electrochim Acta 176:448–455. doi:10.1016/j.electacta.2015.07.054

    Article  Google Scholar 

  2. Isayev O, Rasulev B, Gorb L, Leszczynski J (2006) Structure-toxicity relationships of nitroaromatic compounds. Mol Divers 10:233–245. doi:10.1007/s11030-005-9002-4

    Article  Google Scholar 

  3. Miró M, Cladera A, Estela JM, Cerdá V (2001) Dual wetting-film multi-syringe flow injection analysis extraction application to the simultaneous determination of nitrophenols. Anal Chim Acta 438:103–116. doi:10.1016/S0003-2670(00)01356-8

    Article  Google Scholar 

  4. Perry DA, Son HJ, Cordova JS, Smith LG, Biris AS (2010) Adsorption analysis of nitrophenol isomers on silver nanostructures by surface-enhanced spectroscopy. J Colloid Interface Sci 342:311–319. doi:10.1016/j.jcis.2009.10.053

    Article  Google Scholar 

  5. Belloli R, Barletta B, Bolzacchini E, Meinardi S, Orlandi M, Rindone B (1999) Determination of toxic nitrophenols in the almosphere by high-performance liquid chromatography. J Chromatogr A 846:277–281. doi:10.1016/S0021-9673(99)00030-8

    Article  Google Scholar 

  6. Guo X, Wang Z, Zhou S (2004) The separation and determination of nitrophenol isomers by high-performance capillary zone electrophoresis. Talanta 64:135–139. doi:10.1016/j.talanta.2004.01.020

    Article  Google Scholar 

  7. Alizadeh T, Ganjali MR, Norouzi P, Zare M, Zeraatkar A (2009) A novel high selective and sensitive para-nitrophenol voltammetric sensor, based on a molecularly imprinted polymer-carbon paste electrode. Talanta 79:1197–1203. doi:10.1016/j.talanta.2009.02.051

    Article  Google Scholar 

  8. Buchholz KD, Pawliszyn J (1994) Optimization of solid-phase microextraction conditions for determination of phenols. Anal Chem 66:160–167. doi:10.1021/ac00073a027

    Article  Google Scholar 

  9. Rosenstein B, Lewkowicz M, Kao HC, Korniyenko Y (2010) Ballistic transport in grapheme beyond linear response. Phy Rev B. 81:041416. doi:10.1103/PhysRevB.81.041416

    Article  Google Scholar 

  10. Erogul S, Bas SZ, Ozmen M, Yildiz S (2015) A new electrochemical sensor based on Fe3O4 functionalized graphene oxide-gold nanoparticle composite film for simultaneous determination of catechol and hydroquinone. Electrochim Acta 186:302–313. doi:10.1016/j.electacta.2015.10.174

    Article  Google Scholar 

  11. Arvidsson R, Molander S, Sanden BA (2013) Review of potential environment and health risks of the nanomaterial graphene. Hum Ecol Risk Assess 19:873–887. doi:10.1080/10807039.2012.702039

    Google Scholar 

  12. Brody AL (2006) Nano and food packaging technologies converge. Food Technol 60:92–94

    Google Scholar 

  13. Hu X, Zhou Q (2013) Health and ecosystem risks of graphene. Chem Rev 113:3815–3835. doi:10.1021/cr300045n

    Article  Google Scholar 

  14. Gao W, Majumder M, Alemany LB, Narayanan TN, Ibarra MA, Pradhan BK, Ajayan PM (2011) Engineered graphite oxide materials for application in water purification. ACS Appl Mater Interfaces 3:1821–1826. doi:10.1021/am200300u

    Article  Google Scholar 

  15. Arfin T, Mohammad F (2015) Dendrimer and its role for the advancement of nanotechnology and bioengineering. In: Wythers MC (ed) Advances in materials science research, vol 21. Nova Publishers, New York, pp 153–173

    Google Scholar 

  16. Arfin T, Mohammad F (2014) Thermodynamics and electrochemical characterization of core-shell type gold-coated superparamagnetic iron oxide nanocomposites. Adv Mat Lett 5:315–324. doi:10.5185/amlett.2014.amwc.1030

    Article  Google Scholar 

  17. Jr Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339. doi:10.1021/ja01539a017

    Article  Google Scholar 

  18. Cottineau T, Toupin M, Delahaye T, Brousse T, Belanger D (2005) Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl Phys A Mater Sci Process 82:599–606. doi:10.1007/s00339-005-3401-3

    Article  Google Scholar 

  19. Toupin M, Brousse T, Belanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190. doi:10.1021/cm049649j

    Article  Google Scholar 

  20. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105. doi:10.1038/nnano.2007.451

    Article  Google Scholar 

  21. Li J, Liu C-Y, Liu L (2012) Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J Mater Chem 22:8426–8430. doi:10.1039/C2JM16386A

    Article  Google Scholar 

  22. Fernȃndez-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solȋs-Fernȃndez P, Martȋnez-Alonso A, Tascȏn JMD (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114:6426–6432. doi:10.1021/jp100603h

    Article  Google Scholar 

  23. Xu LQ, Yang WJ, Neoh KG, Kang ET, Fu GD (2010) Dopaime-induced reduction and dunctionalized of graphene oxide nanosheets. Macromolecules 43:8336–8339. doi:10.1021/ma101526k

    Article  Google Scholar 

  24. Arfin T, Kumar C (2014) Synthesis, characterization, conductivity and antibacterial activity of ethyl cellulose manganese (II) hydrogen phosphate. Anal Bioanal Electrochem 6:403–421

    Google Scholar 

  25. Arfin T, Mohammad F (2016) Electrochemical, antimicrobial and anticancer effect of ethyl cellulose-nickel (II) hydrogen phosphate. Innov Corros Mater Sci 6:10–18. doi:10.2174/2352094906999160307182012

    Google Scholar 

  26. Xu CY, Zhang PX, Yan L (2001) Blue shift of Raman peak from coated TiO2 nanoparticles. J Raman Spectrosc 32:862–865. doi:10.1002/jrs.773

    Article  Google Scholar 

  27. Yu PY, Cardona M (1996) Fundamentals of semiconductors: physics and material properties. Springer-Verlag, Berlin

    Book  Google Scholar 

  28. Gurunathan S, Han JW, Dayem AA, Eppakayala V, Park M-R, Kwon D-N, Kim J-H (2013) Antibacterial activity of dithiothreitol reduced graphene oxide. J Ind Eng Chem 19:1280–1288. doi:10.1016/j.jiec.2012.12.029

    Article  Google Scholar 

  29. Krishnamoorthy K, Veerpandian M, Mohan R, Kim S-J (2012) Investigation of Raman and photoluminescence studies of reduced graphene oxide sheets. Appl Phys A Mater Sci Process 106:501–506. doi:10.1007/s00339-011-6720-6

    Article  Google Scholar 

  30. Shen J, Shi M, Yan B, Ma H, Li N, Hu Y (2010) Ye M (2010) Covalent attaching protein to graphene oxide via diimide-activated amidation. Colloid Surf B: Biointerfaces 81(434–438):434. doi:10.1016/j.colsurfb.2010.07.035

    Article  Google Scholar 

  31. Lu J, Yang J-X, Wang J, Lim A, Wang S, Loh KP (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3:2367–2375. doi:10.1021/nn900546b

    Article  Google Scholar 

  32. Chen WF, Yan LF, Bangal PR (2010) Chemical reduction of graphene oxide to graphene by sulphur-containing compounds. J Phys Chem C 114:19885–19890. doi:10.1021/jp107131v

    Article  Google Scholar 

  33. Song P, Zhang XY, Sun MX, Cui XL, Lin YH (2012) Synthesis of graphene nanosheets via oxalic acid-induced chemical reduction of exfoliated graphite oxide. RSC Adv 2:1168–1173. doi:10.1039/C1RA00934F

    Article  Google Scholar 

  34. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565. doi:10.1016/j.carbon.2007.02.034

    Article  Google Scholar 

  35. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224. doi:10.1038/nnano.2009.58

    Article  Google Scholar 

  36. Rattana Chaiyakun S, Witit-anun N, Nuntawong N, Chindaudom P, Oaew S, Kedkeaw C, Limsuwan P (2012) Preparation and characterization of graphene oxide nanosheets. Procedia Eng 32:759–764. doi:10.1016/j.proeng.2012.02.009

    Article  Google Scholar 

  37. Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett. 8:1679–1682. doi:10.1021/nl080604h

    Article  Google Scholar 

  38. Ntsendwana B, Mamba BB, Sampath S, Arotiba OA (2012) Electrochemical detection of bisphenol a using graphene-modified glassy carbon electrode. Int J Electrochem Sci 7:3501–3512

    Google Scholar 

  39. Arfin T, Falch A, Kriek RJ (2012) Evaluation of charge density and the theory for calculating membrane potential for a nano-composite nylon-6,6 nickel phosphate membrane. Phys Chem Chem Phys 14:16760–16769. doi:10.1039/C2CP42683H

    Article  Google Scholar 

  40. Arfin T, Mohammad F (2013) Synthesis, characterization and influence of electrolyte solutions towards the electrical properties of nylon-6,6 nickel carbonate membrane: test for the theory of uni-ionic potential based on thermodynamics of irreversible processes. In: Lefebure J (ed) Halides: chemistry. Physical Properties and Structural Effects, Nova Publishers, New York, pp 39–66

    Google Scholar 

  41. Ma HL, Zhang YW, Hu QH, Yan D, Yu ZZ, Zhai ML (2012) Chemical reduction and removal of Cr(VI) from acidic aqueous solution by ethylenediamine-reduced graphene oxide. J Mater Chem 22:5914–5916

    Article  Google Scholar 

  42. Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M (2012) A graphene oxide-based electrochemocal sensor for sensitive determination of 4-nitrophenol. J Hazard Mater 201–202:250–259. doi:10.1016/j.jhazmat.2011.11.076

    Article  Google Scholar 

  43. El Mhammedi MA, Achak M, Bakasse M, Chtaini A (2009) Electrochemical determination of para-nitrophenol at apatite-modified carbon paste electrode: application in river water samples. J Hazard Mater 163:323–328. doi:10.1016/j.jhazmat.2008.06.126

    Article  Google Scholar 

  44. Yang C (2004) Electrochemical determination of 4-nitrophenol using a single-wall carbon nanotube film-coated glassy carbon electrode. Microchim Acta 148:87–92. doi:10.1007/s00604-004-0240-4

    Article  Google Scholar 

  45. Huang W, Yang C, Zhang S (2003) Simultaneous determination of 2-nitrophenol and 4-nitrophenol based on the multi-wall carbon nanotubes nafion-modified electrode. Anal Bioanal Chem 375:703–707. doi:10.1007/s00216-002-1745-5

    Article  Google Scholar 

  46. Luz RCS, Damos FS, de Oliverira AB, Beck J, Kubota LT (2004) Voltammetric determination of 4-nitrophenol at a lithium tetracynoethylenide (LiTCNE) modified glassy carbon electrode. Talanta 64:935–942. doi:10.1016/j.talanta.2004.04.010

    Article  Google Scholar 

  47. Zhang D-P, Wu W-L, Long H-Y, Liu Y-C, Yang Z-S (2008) Voltammetric behaviour of o-nitrophenol and damage to DNA. Int J Mol Sci 9:316–326. doi:10.3390/ijms9030316

    Article  Google Scholar 

  48. Yao C, Sun H, Fu H-F, Tan Z-C (2015) Sensitive simultaneous determination of nitrophenol isomers at poly (p-aminobenzene sulfonic acid) film modified graphite electrode. Electrochim Acta 156:163–170. doi:10.1016/j.electacta.2015.01.043

    Article  Google Scholar 

  49. Xu X, Liu Z, Zhang X, Duan S, Xu S, Zhou C (2011) & #x03B2;-cyclodextrin functionalized mesoporous silica for electrochemical selective sensor: simultaneous determination of nitrophenol isomers. Electrochim Acta 58:142–149. doi:10.1016/j.electacta.2011.09.015

    Article  Google Scholar 

  50. Chu L, Han L, Zhang X (2011) Electrochemical simultaneous determination of nitrophenol isomers at nano-gold modified glassy carbon electrode. J Appl Electrochem 41:687–694. doi:10.1007/s10800-011-0281-4

    Article  Google Scholar 

  51. Liu Z, Ma X, Zhang H, Lu W, Ma H, Hou S (2012) Simultaneous determination of nitrophenol isomers based on & #x03B2;-cyclodextrin functionalized reduced graphene oxide. Electroanal 24:1178–1185. doi:10.1002/elan.201100735

    Article  Google Scholar 

  52. Luo L-Q, Zou X-L, Ding Y-P, Wu Q-S (2008) Derivative voltammetric direct simultaneous determination of nitrophenol isomers at a carbon nanotube modified electrode. Sensor Actuat B Chem 135:61–65. doi:10.1016/j.snb.2008.07.019

    Article  Google Scholar 

  53. Tang J, Zhang L, Han G, Liu Y, Tang W (2015) Graphene-chitosan composite modified electrode for simultaneous detection of nitrophenol isomers. J Electrochem Soc 162:B267–B274. doi:10.1149/2.0811510jes

    Google Scholar 

Download references

Acknowledgments

The authors thank University of Johannesburg and Aligarh Muslim University for providing facilities. We thank an anonymous reviewer for constructive criticism on earlier manuscript version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanvir Arfin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arfin, T., Bushra, R. & Mohammad, F. Electrochemical sensor for the sensitive detection of o-nitrophenol using graphene oxide-poly(ethyleneimine) dendrimer-modified glassy carbon electrode. Graphene Technol 1, 1–15 (2016). https://doi.org/10.1007/s41127-016-0002-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41127-016-0002-1

Keywords

Navigation