Skip to main content
Log in

A geo-spatial inter-relationship with drainage morphometry, landscapes and NDVI in the context of climate change: a case study over the Varuna river basin (India)

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

Watershed development and management is essential for the present as well as future constancy of water resources in a river basin. Watershed prioritization, planning and development are depending on the morphometric analysis of a basin. The drainages of a basin are mainly influenced on geomorphic appearances which show a dynamic role for monitoring the basin’s hydrology as per topographical characteristics. In this paper, the morphometric study was characterized by set of parameters i.e. linear, aerial and relief aspects of Varuna river basin (India) with the integration of geo-spatial techniques. The mean annual rainfall, Normalized Difference Vegetation Index, Digital Elevation Model and Land Use/Land Cover (LULC) were taken into account for this study. The annual rainfall pattern and its percentage departure were shown by high frequencies of drought conditions while the seasonality index depicts that mostly rainfall occurred in less than 3 months. Moreover, indices such as Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index were used to conclude past extreme drought conditions (1996–2002, 2010–2017) over the basin. LULC changes were monitored over the south-east and north-west part of river basin during the period 1977 to 2013. The results revealed that an increasing trend of urbanization was monitored due to a decrease in agricultural land by 40.71% in the lower part of the basin. Moreover, the overall study can be helpful to assess the quantitative depiction of basin geometry as well as land use pattern for future development of agricultural growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shukla, U. K., & Janardhana, R. N. (2008). Migration of the Ganga river and its implication on hydro-geological potential of Varanasi area, UP, India. Journal of Earth System Science,117(4), 489–498. https://doi.org/10.1007/s12040-008-0048-4.

    Article  Google Scholar 

  2. Prakash, K., Singh, S., & Shukla, U. K. (2016). Morphometric changes of the Varuna River basin, Varanasi district, Uttar Pradesh. Journal of Geomatics,10(1), 48–54.

    Google Scholar 

  3. Shukla, U. K. (2013). Varanasi and the Ganga river: A geological perspective. In V. Jayaswal (Ed.), Varanasi, Myths and scientific studies (pp. 100–113). New Delhi: Aryan Book International.

    Google Scholar 

  4. Khan, A. A., Nawani, P. C., & Srivastava, M. C. (1988). Geomorphological evolution of the area around Varanasi, UP with the aid of aerial photographs and LANDSAT imageries. Geological Survey of India,113(8), 31–39.

    Google Scholar 

  5. Agarwal, C. S. (1998). Study of drainage pattern through aerial data in Naugarh area of Varanasi district, UP. Journal of the Indian Society of Remote Sensing,26(4), 169–175. https://doi.org/10.1007/BF02990795.

    Article  Google Scholar 

  6. Raju, N. J., Ram, P., & Dey, S. (2009). Groundwater quality in the lower Varuna river basin, Varanasi district, Uttar Pradesh. Journal of the Geological Society of India,73(2), 178–192. https://doi.org/10.1007/s12594-009-0074-0.

    Article  Google Scholar 

  7. Denizman, C. A. N. (2003). Morphometric and spatial distribution parameters of karstic depressions. Lower Suwannee River Basin, Florida. Journal of Cave and Karst Studies,65(1), 29–35.

    Google Scholar 

  8. Mesa, L. M. (2006). Morphometric analysis of a subtropical Andean basin (Tucuman, Argentina). Environmental Geology,50(8), 1235–1242. https://doi.org/10.1007/s00254-006-0297-y.

    Article  Google Scholar 

  9. Mall, R. K., Attri, S. D., & Kumar, S. (2011). Extreme weather events and climate change policy in India. Journal of South Asia Disaster Studies,4(2), 37–56.

    Google Scholar 

  10. Mall, R. K., Kumar, R., & Bhatla, R. (2011). Climate change and disasters in India. Journal of South Asia Disaster Studies,4(1), 27–76.

    Google Scholar 

  11. Subedi, M. R., Xi, W., Edgar, C. B., Rideout-Hanzak, S., & Hedquist, B. C. (2019). Assessment of geostatistical methods for spatiotemporal analysis of drought patterns in East Texas, USA. Spatial Information Research,27(1), 11–21. https://doi.org/10.1007/s41324-018-0216-9.

    Article  Google Scholar 

  12. Dai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change,3(1), 52–58. https://doi.org/10.1038/nclimate1633.

    Article  Google Scholar 

  13. Dutta, D., Kundu, A., Patel, N. R., Saha, S. K., & Siddiqui, A. R. (2015). Assessment of agricultural drought in Rajasthan (India) using remote sensing derived vegetation condition index (VCI) and standardized precipitation index (SPI). The Egyptian Journal of Remote Sensing and Space Science,18(1), 53–63. https://doi.org/10.1016/j.ejrs.2015.03.006.

    Article  Google Scholar 

  14. Biswas, S., Sudhakar, S., & Desai, V. R. (1999). Prioritisation of subwatersheds based on morphometric analysis of drainage basin. A remote sensing and GIS approach. Journal of the Indian Society of Remote Sensing,27(3), 155–166. https://doi.org/10.1007/s12524-009-0016-8.

    Article  Google Scholar 

  15. Prakash, K., Singh, S., Mohanty, T., Chaubey, K., & Singh, C. K. (2017). Morphometric assessment of Gomati river basin, middle Ganga plain, Uttar Pradesh, North India. Spatial Information Research,25(3), 449–458. https://doi.org/10.1007/s41324-017-0110-x.

    Article  Google Scholar 

  16. Dutta, D., Kundu, A., & Patel, N. R. (2013). Predicting agricultural drought in eastern Rajasthan of India using NDVI and standardized precipitation index. Geocarto International,28(3), 192–209. https://doi.org/10.1080/10106049.2012.679975.

    Article  Google Scholar 

  17. Kundu, A., Dwivedi, S., & Dutta, D. (2016). Monitoring the vegetation health over India during contrasting monsoon years using satellite remote sensing indices. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-015-2185-9.

    Article  Google Scholar 

  18. Kundu, A., Patel, N. R., Saha, S. K., & Dutta, D. (2017). Desertification in western Rajasthan (India): An assessment using remote sensing derived rain-use efficiency and residual trend methods. Natural Hazards,86(1), 297–313. https://doi.org/10.1007/s11069-016-2689-y.

    Article  Google Scholar 

  19. Emiru, T., Naqvi, H. R., & Athick, M. A. (2018). Anthropogenic impact on land use land cover: Influence on weather and vegetation in Bambasi Wereda, Ethiopia. Spatial Information Research,26(4), 427–436. https://doi.org/10.1007/s41324-018-0186-y.

    Article  Google Scholar 

  20. Griffith, J. A., Martinko, E. A., Whistler, J. L., & Price, K. P. (2002). Interrelationships among landscapes, NDVI, and stream water quality in the US Central Plains. Ecological Applications,12(6), 1702–1718.

    Article  Google Scholar 

  21. Kinthada, N. R., Gurram, M. K., Eadara, A., & Velagala, V. R. (2014). Land use/land cover and NDVI analysis for monitoring the health of micro-watersheds of Sarada River Basin, Visakhapatnam District, India. Journal of Geosciences,3, 146. https://doi.org/10.4172/2329-6755.1000146.

    Article  Google Scholar 

  22. Sahoo, S., Dhar, A., Kayet, N., & Kar, A. (2017). Detecting water stress scenario by land use/land cover changes in an agricultural command area. Spatial Information Research,25(1), 11–21. https://doi.org/10.1007/s41324-016-0073-3.

    Article  Google Scholar 

  23. Mall, R. K., Gupta, A., Singh, R., Singh, R. S., & Rathore, L. S. (2006). Water resources and climate change: An Indian perspective. Current Science,90(12), 1610–1626.

    Google Scholar 

  24. Weil, Z., & Xinfeng, F. (2015). Analysis and evaluation of principal climatic factors of NDVI in the Yarlung Zangbo River Basin. Journal of Physics,622(1), 1–8. https://doi.org/10.1088/1742-6596/622/1/012048.

    Article  Google Scholar 

  25. Bhatt, D., & Mall, R. K. (2015). Surface water resources, climate change and simulation modeling. Aquatic Procedia,4, 730–738. https://doi.org/10.1016/j.aqpro.2015.02.094.

    Article  Google Scholar 

  26. Turner, M. G., Romme, W. H., Gardner, R. H., O’Neill, R. V., & Kratz, T. K. (1993). A revised concept of landscape equilibrium: Disturbance and stability on scaled landscapes. Landscape Ecology,8(3), 213–227. https://doi.org/10.1007/BF00125352.

    Article  Google Scholar 

  27. Forootan, E., Schumacher, M., Awange, J. L., & Schmied, H. M. (2016). Exploring the influence of precipitation extremes and human water use on total water storage (TWS) changes in the Ganges–Brahmaputra–Meghna River Basin. Water Resources Research,52(3), 2240–2258. https://doi.org/10.1002/2015WR018113.

    Article  Google Scholar 

  28. Kundu, A., Denis, D. M., Patel, N. R., & Dutta, D. (2018). A geo-spatial study for analysing temporal responses of NDVI to rainfall. Singapore Journal of Tropical Geography,39(1), 107–116. https://doi.org/10.1111/sjtg.12217.

    Article  Google Scholar 

  29. Pophare, A. M., & Balpande, U. S. (2014). Morphometric analysis of Suketi river basin, Himachal Himalaya. Journal of Earth System Science,123(7), 1501–1515. https://doi.org/10.1007/s12040-014-0487-z.

    Article  Google Scholar 

  30. Rai, P. K., Chaubey, P. K., Mohan, K., & Singh, P. (2017). Geoinformatics for assessing the nferences of quantitative drainage morphometry of the Narmada Basin in India. Applied Geomatics,9(3), 167–189. https://doi.org/10.1007/s12518-017-0191-1.

    Article  Google Scholar 

  31. Kothawale, D. R., Revadekar, J. V., & Kumar, K. R. (2010). Recent trends in pre-monsoon daily temperature extremes over India. Journal of Earth System Science,119(1), 51–65. https://doi.org/10.1007/s12040-010-0008-7.

    Article  Google Scholar 

  32. Walsh, R. P. D., & Lawler, D. M. (1981). Rainfall seasonality: Description, spatial patterns and change through time. Weather,36(7), 201–208. https://doi.org/10.1002/j.1477-8696.1981.tb05400.x.

    Article  Google Scholar 

  33. McKee, T. N., Doesken, J., & Kliest, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th conference on applied climatology (Vol. 17(22), pp. 179–183). Boston, MA: American Meteorological Society.

  34. Strahler, A. N. (1964). Part II. Quantitative geomorphology of drainage basins and channel networks. Handbook of applied hydrology (pp. 4–39). New York: McGraw-Hill.

    Google Scholar 

  35. Chitra, C., Alaguraja, P., Ganeshkumari, K., Yuvaraj, D., & Manivel, M. (2011). Watershed characteristics of Kundah sub basin using Remote Sensing and GIS techniques. International Journal of Geomatics and Geosciences,2(1), 311–335.

    Google Scholar 

  36. Horton, R. E. (1945). Erosional development of streams and their drainage basins hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America,56(3), 275–370. https://doi.org/10.1177/030913339501900406.

    Article  Google Scholar 

  37. Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. EOS, Transactions American Geophysical Union,38(6), 913–920. https://doi.org/10.1029/TR038i006p00913.

    Article  Google Scholar 

  38. Verstappen, H. T. (1983). Applied geomorphology: Geomorphological surveys for environmental development (p. 437). Amsterdam: Elsevier.

    Google Scholar 

  39. Singh, P., Thakur, J. K., & Singh, U. C. (2013). Morphometric analysis of Morar River Basin, Madhya Pradesh, India, using remote sensing and GIS techniques. Environmental Earth Sciences,68(7), 1967–1977. https://doi.org/10.1007/s12665-012-1884-8.

    Article  Google Scholar 

  40. Guarnieri, P., & Pirrotta, C. (2008). The response of drainage basins to the late Quaternary tectonics in the Sicilian side of the Messina Strait (NE Sicily). Geomorphology,95(3–4), 260–273. https://doi.org/10.1016/j.geomorph.2007.06.013.

    Article  Google Scholar 

  41. Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin,67(5), 597–646. https://doi.org/10.1130/0016-7606.

    Article  Google Scholar 

  42. Pareta, K., & Pareta, U. (2011). Quantitative morphometric analysis of a watershed of Yamuna basin, India using ASTER (DEM) data and GIS. International Journal of Geomatics and Geosciences,2(1), 248–269.

    Google Scholar 

  43. Horton, R. E. (1932). Drainage-basin characteristics. Eos, Transactions American Geophysical Union,13(1), 350–361. https://doi.org/10.1029/TR013i001p00350.

    Article  Google Scholar 

  44. Singh, V. P., Yadav, S., & Yadava, R. N. (2018). Hydrologic modeling, earth and environmental science, water science and technology library book series (Vol. 81). Aurora: WSTL. https://doi.org/10.1007/978-981-10-5801-1.

    Book  Google Scholar 

  45. Melton, M. A. (1957). An analysis of the relations among elements of climate, surface properties, and geomorphology (No. CU-TR-11). New York: Columbia University.

    Google Scholar 

  46. Sreedevi, P., Srinivasulun, S., & Kesava, R. K. (2001). Hydrogeomorphological and groundwater prospects of the Pageru river basin by using remote sensing data. Environmental Geology,40(9), 1088–1094. https://doi.org/10.1007/s002540100295.

    Article  Google Scholar 

  47. Mueller, J. E. (1968). An introduction to the hydraulic and topographic sinuosity indexes. Annals of the Association of American Geographers,58(2), 371–385.

    Article  Google Scholar 

  48. Howard, A. D. (1967). Drainage analysis in geologic interpretation: A summation. AAPG Bulletin,51(11), 2246–2259.

    Google Scholar 

  49. Hack, J. (1957). Studies of longitudinal stream profiles in Virginia and Maryland. U.S. Geological Survey Professional Paper, 294–B. https://doi.org/10.3133/pp294B.

  50. Chorley, R. J., Donald, Malm, E. G., & Pogorzelski, H. A. (1957). A new standard for estimating drainage basin shape. American Journal of Science, 255, 138–141. https://doi.org/10.2475/ajs.255.2.138.

    Article  Google Scholar 

  51. Miller, V. C. (1953). A quantitative geomorphic study of drainage basin characteristics in the clinch mountain area. Virginia and Tennessee. In: Technical Report. 3. Office of Naval Research. Department of Geology. Columbia University, Geography Branch, New York 1960.

  52. Gravelius, H. (1914). Flusskunde. Goschen Verlagshan dlung berlin. In Zavoianu I (Ed.), 1985. Morphometry of drainage basins. Amsterdam: Elsevier.

    Google Scholar 

  53. Smart, S., & Surkan, A. J. (1967). The relation between main stream length and area in drainage basins. Water Resources Research, 3(4), 963–973. https://doi.org/10.1029/WR003i004p00963.

    Article  Google Scholar 

  54. Black, P. E. (1972). Hydrograph responses to geomorphic model watershed characteristics and precipitation variables. Journal of Hydrology, 17(4), 309–329. https://doi.org/10.1016/0022-1694(72)90090-X.

    Article  Google Scholar 

  55. Faniran, A. (1968). The index of drainage intensity- a provisional new drainage factor. Australian Journal of Science, 31, 328–330.

    Google Scholar 

  56. Strahler, A. N. (1968). Quantitative geomorphology, Geomorphology. In R. W. Fair-Bridge (Ed.), The encyclopidia of geomorphology (pp. 898–912). Strousburg: Dowden, Hutchinson and Ross.

    Chapter  Google Scholar 

  57. Melton, M. A. (1965). The geomorphic and paleoclimatic significance of alluvial deposits in southern Arizona. The Journal of Geology,73(1), 1–38.

    Article  Google Scholar 

  58. Sreedevi, P. D., Sreekanth, P. D., Khan, H. H., & Ahmed, S. (2013). Drainage morphometry and its influence on hydrology in an semi-arid region: Using SRTM data and GIS. Environmental Earth Sciences,70(2), 839–848. https://doi.org/10.1007/s12665-012-2172-3.

    Article  Google Scholar 

  59. Singh, S., & Dubey, A. (1994). Geoenvironmental planning of watershed in India (pp. 28–69). Allahabad: Chugh Publications.

    Google Scholar 

  60. Sreedevi, P. D., Subrahmanyam, K. & Ahmed, S. (2005). Integrated approach for delineating potential zones to explore for groundwater in the Pageru River basin, Cuddapah District, Andhra Pradesh, India.Hydrogeology Journal, 13(3), 534–543. https://doi.org/10.1007/s10040-004-0375-8.

    Article  Google Scholar 

  61. Paton, P. C., & Baker, V. R. (1976). Morphometry and floods in small drainage basins subject to diverse Hydrogeomorphic controls. Water Resources Research, 12(5), 941–952. https://doi.org/10.1029/WR012i005p00941.

    Article  Google Scholar 

  62. Broscoe, A. J. (1959). Quantitative analysis of longitudinal stream profiles of small watersheds, project NR 389–042, technical report No. 18. Department of Geology, Columbian University, ONR, Geography Branch, New York 27, N.Y.

  63. Gajbhiye, S., Mishra, S. K., & Pandey, A. (2014). Prioritizing erosion-prone area through morphometric analysis: An RS and GIS perspective. Applied Water Science,4(1), 51–61. https://doi.org/10.1007/s13201-013-0129-7.

    Article  Google Scholar 

  64. Sharma, V. V. L. N., Krishna, G. M., Malini, B. H., & Rao, K. N. (2001). Landuse/Landcover change detection through remote sensing and its climatic implications in the Godavari delta region. Journal of the Indian Society of Remote Sensing.,29(1–2), 85–91. https://doi.org/10.1007/BF02989918.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the CGIR-CSI for providing the SRTM DEM, Earth Explorer (USGS) for Landsat satellite imagery used for successful analysis of the study. In addition, we are thankful to IMD, New Delhi and JAXA for providing for providing rainfall datasets used in this study. Authors are thankful to DST-MCECCR sponsored by Department of Science and Technology, Govt. of India, New Delhi for accomplishing the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Mall.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaubey, P.K., Kundu, A. & Mall, R.K. A geo-spatial inter-relationship with drainage morphometry, landscapes and NDVI in the context of climate change: a case study over the Varuna river basin (India). Spat. Inf. Res. 27, 627–641 (2019). https://doi.org/10.1007/s41324-019-00264-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-019-00264-2

Keywords

Navigation