Skip to main content
Log in

3D microstructures of nuclear graphite: IG-110, NBG-18 and NG-CT-10

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Molten salt is used as primary coolant flowing through graphite moderator channel of a molten salt reactor. Working at high temperature under radiation environment, the pore network structure of nuclear graphite should be well understood. In this paper, X-ray tomography is employed to study the 3D pore structure characteristics of nuclear grades graphite of IG-110, NBG-18 and NG-CT-10, and permeability simulation through geometries are performed. The porosity, number of pores and throats, coordination number and pore surface are obtained. NG-CT-10 is of similar microstructure to IG-110, but differs significantly from NBG-18. The absolute permeabilities of IG-110, NG-CT-10 and NBG-18 are 0.064, 0.090 and 0.106 mD, respectively. This study provides basis for future research on graphite infiltration experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002, GIF-002-00

  2. W. Windes, T. Burchell, R. Bratton. Report—INL/EXT-07-13165, 2007

  3. R. Bratton, W. Windes. Report—ORNL/TM-2007/153-10-07 2010

  4. C. Berre, S.L. Fok, P.M. Mummery et al., Failure analysis of the effects of porosity in thermally oxidised nuclear graphite using finite element modelling. J. Nucl. Mater. 381, 1–8 (2008). doi:10.1016/j.jnucmat.2008.07.021

    Article  Google Scholar 

  5. A.S. Nazarov, V.G. Makotchenko, V.E. Fedorov, Preparation of low-temperature graphite fluorides through decomposition of fluorinated-graphite intercalation compounds. Inorg. Mater. 42, 1260–1264 (2006). doi:10.1134/S002016850611015x

    Article  Google Scholar 

  6. J. Giraudet, M. Dubois, K. Guerin et al., Solid-state NMR study of the post-fluorination of (C2.5F)n fluorine-GIC. J. Phys. Chem. B 111, 14143–14151 (2007). doi:10.1021/Jp076170g

    Article  Google Scholar 

  7. M. Dubois, K. Guerin, J.P. Pinheiro et al., NMR and EPR studies of room temperature highly fluorinated graphite heat-treated under fluorine atmosphere. Carbon 42, 1931–1940 (2004). doi:10.1016/j.carbon.2004.03.025

    Article  Google Scholar 

  8. X.M. Yang, S.L. Feng, X.T. Zhou et al., Interaction between nuclear graphite and molten fluoride salts: A synchrotron radiation study of the substitution of graphitic hydrogen by fluoride ion. J. Phys. Chem. A 116, 985–989 (2012). doi:10.1021/Jp208990y

    Article  Google Scholar 

  9. G.Q. Zheng, P. Xu, K. Sridharan et al., Characterization of structural defects in nuclear graphite IG-110 and NBG-18. J. Nucl. Mater. 446, 193–199 (2014). doi:10.1016/j.jnucmat.2013.12.013

    Article  Google Scholar 

  10. L. Hongwei, G. Mingshan, S. Libin. Strength Weibull distribution analysis for the NBG-18 graphite in HTR. Trans. SMiRT 19, 2025–2082 (2007)

  11. T.R. Allen, K. Sridharan, L. Tan et al., Materials challenges for generation IV nuclear energy systems. Nucl. Technol. 162, 342–357 (2008)

    Google Scholar 

  12. J. Sumita, T. Shibata, I. Fujita et al., Development of evaluation method with X-ray tomography for material property of IG-430 graphite for VHTR/HTGR. Nucl. Eng. Des. 271, 314–317 (2014). doi:10.1016/j.nucengdes.2013.11.053

    Article  Google Scholar 

  13. C. Karthik, J. Kane, D.P. Butt et al., Microstructural characterization of next generation nuclear graphites. Microsc. Microanal. 18, 272–278 (2012). doi:10.1017/S1431927611012360

    Article  Google Scholar 

  14. C. Karthik, J. Kane, D.P. Butt et al., In situ transmission electron microscopy of electron-beam induced damage process in nuclear grade graphite. J. Nucl. Mater. 412, 321–326 (2011). doi:10.1016/j.jnucmat.2011.03.024

    Article  Google Scholar 

  15. R.K.L. Su, H.H. Chen, S.L. Fok et al., Determination of the tension softening curve of nuclear graphites using the incremental displacement collocation method. Carbon 57, 65–78 (2013). doi:10.1016/j.carbon.2013.01.033

    Article  Google Scholar 

  16. J. Kane, C. Karthik, D.P. Butt et al., Microstructural characterization and pore structure analysis of nuclear graphite. J. Nucl. Mater. 415, 189–197 (2011). doi:10.1016/j.jnucmat.2011.05.053

    Article  Google Scholar 

  17. J. Sumita, T. Shibata, E. Kunimoto et al., The development of a microstructural model to evaluate the irradiation-induced property changes in IG-110 graphite using x-ray tomography. R. Soc. Chem. 328, 163–170 (2010)

    Google Scholar 

  18. L.A. Feldkamp, L.C. Davis, J.W. Kress, Practical cone-beam algorithm. J. Opt. Soc. Am. A 1, 612–619 (1984). doi:10.1364/Josaa.1.000612

    Article  Google Scholar 

  19. H. Wang, L.J. Ma, K.C. Cao et al., Selective solid-phase extraction of uranium by salicylideneimine-functionalized hydrothermal carbon. J. Hazard. Mater. 229, 321–330 (2012). doi:10.1016/j.jhazmat.2012.06.004

    Article  Google Scholar 

  20. A. Buades, B. Coll, V. Morel, A non-local algorithm for image denoising. Proc. CVPR IEEE 2, 60–65 (2005). doi:10.1109/CVPR.2005.38

    MATH  Google Scholar 

  21. W. Oh, W.B. Lindquist, Image thresholding by indicator kriging. IEEE Trans Pattern Anal 21, 590–602 (1999). doi:10.1109/34.777370

    Article  Google Scholar 

  22. S. Peth, R. Horn, F. Beckmann et al., Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography. Soil Sci. Soc. Am. J. 72, 897–907 (2008). doi:10.2136/sssaj2007.0130

    Article  Google Scholar 

  23. W.B. Lindquist, A. Venkatarangan, Investigating 3D geometry of porous media from high resolution images. Phys. Chem. Earth Part A 24, 593–599 (1999). doi:10.1016/S1464-1895(99)00085-X

    Article  Google Scholar 

  24. T.C. Lee, R.L. Kashyap, C.N. Chu, Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP-Graph Model Image Process. 56, 462–478 (1994). doi:10.1006/cgip.1994.1042

    Article  Google Scholar 

  25. W.B. Lindquist, A. Venkatarangan, J. Dunsmuir et al., Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. J. Geophys. Res. 105, 21509–21527 (2000). doi:10.1029/2000jb900208

    Article  Google Scholar 

  26. B.J. Zhu, H.H. Cheng, Y.C. Qiao et al., Porosity and permeability evolution and evaluation in anisotropic porosity multiscale-multiphase-multicomponent structure. Chin. Sci. Bull. 57, 320–327 (2012). doi:10.1007/s11434-011-4874-4

    Article  Google Scholar 

  27. J.M. Sharp, C.T. Simmons, The compleat Darcy: new lessons learned from the first English translation of Les Fontaines publiques de la Ville de Dijon. Ground Water 43, 457–460 (2005). doi:10.1111/j.1745-6584.2005.0076.x

    Article  Google Scholar 

  28. S. Peng, F. Marone, S. Dultz, Resolution effect in X-ray microcomputed tomography imaging and small pore’s contribution to permeability for a Berea sandstone. J. Hydrol. 510, 403–411 (2014). doi:10.1016/j.jhydrol.2013.12.028

    Article  Google Scholar 

  29. X. Yang, S. Feng, X. Zhou et al., Interaction between nuclear graphite and molten fluoride salts: a synchrotron radiation study of the substitution of graphitic hydrogen by fluoride ion. J. Phys. Chem. A 116, 985–989 (2012). doi:10.1021/jp208990y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Jin.

Additional information

This work was supported by National Natural Science Foundation of China (Nos. 11275256 and 11179024), and Program of International S&T Cooperation (No. 2014DFG60230).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, SP., Zhang, C., Pu, J. et al. 3D microstructures of nuclear graphite: IG-110, NBG-18 and NG-CT-10. NUCL SCI TECH 27, 66 (2016). https://doi.org/10.1007/s41365-016-0071-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0071-0

Keywords

Navigation