Skip to main content
Log in

Preparation and characterization of Bi2O3/XNBR flexible films for attenuating gamma rays

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A bismuth oxide (Bi2O3)-dispersed carboxylated nitrile butadiene rubber (XNBR) flexible film was prepared as a flexible lead-free material for gamma ray (γ-ray) attenuation. However, obtaining a uniform and stable dispersion of Bi2O3 in carboxylated nitrile butadiene rubber latex (XNBRL) is a challenge due to sedimentation induced by the remarkable density differences. Here, this challenge was approached by reducing the Bi2O3 particle radius, increasing the viscosity of the latex, and adding a dispersant. The experimental results confirmed that Bi2O3 was well dispersed in the XNBRL in the concentration range of 30–70 wt%. The mechanical properties demonstrated that the Bi2O3/XNBR flexible films had a good resistance to oil, acid, alkali, and hot air. The linear attenuation coefficients of the Bi2O3/XNBR flexible films obtained from the experiments were in good agreement with the calculated values. The attenuation efficiencies of the Bi2O3/XNBR flexible films with different thicknesses and Bi2O3 contents were investigated for a few different γ-ray energies. These results showed that the Bi2O3/XNBR flexible films have wide application prospects for low-energy γ-ray attenuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Fu, Y. Sun, Y. Lu, Current status of radiation therapy for prostate cancer. Nucl. Sci. Tech. 18, 65–72 (2007). https://doi.org/10.1016/S1001-8042(07)60021-9

    Article  Google Scholar 

  2. Q. Liu, B. Jiang, L.P. Jiang et al., Clinical report of three cases of acute radiation sickness from a 60Co radiation accident in Henan province in China. J. Radiat. Res. 49, 63–69 (2008). https://doi.org/10.1269/jrr.07071

    Article  Google Scholar 

  3. S. Zhao, S. Huang, S. Liu et al., Measurements of 134Cs and 137Cs in urine and estimation of the internal dose of an adult exposed to the Chernobyl Accident. Nucl. Sci. Tech. 18, 115–117 (2007). https://doi.org/10.1016/S1001-8042(07)60030-X

    Article  Google Scholar 

  4. I. Akkurt, H. Akyıldırım, B. Mavi et al., Photon attenuation coefficients of concrete includes barite in different rate. Ann. Nucl. Energy 37, 910–914 (2010). https://doi.org/10.1016/j.anucene.2010.04.001

    Article  Google Scholar 

  5. M.E. Medhat, Y. Wang, Investigation on radiation shielding parameters of oxide dispersion strengthened steels used in high temperature nuclear reactor applications. Ann. Nucl. Energy 80, 365–370 (2015). https://doi.org/10.1016/j.anucene.2015.01.044

    Article  Google Scholar 

  6. M.H. Kharita, M. Takeyeddin, M. Alnassar et al., Development of special radiation shielding concretes using natural local materials and evaluation of their shielding characteristics. Prog. Nucl. Energy 50, 33–36 (2008). https://doi.org/10.1016/j.pnucene.2007.10.004

    Article  Google Scholar 

  7. N. Singh, K.J. Singh, K. Singh et al., Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials. Nucl. Instrum. Methods Phys. Res., Sect. B 225, 305–309 (2004). https://doi.org/10.1016/j.nimb.2004.05.016

    Article  Google Scholar 

  8. J. Kim, D. Seo, B.C. Lee et al., Nano-W dispersed gamma radiation shielding materials. Adv. Eng. Mater. 16, 1083–1089 (2014). https://doi.org/10.1002/adem.201400127

    Article  Google Scholar 

  9. W. Qin, D. Peng, X. Wu, Study on the damage effects of electron and proton combined irradiation on T700/cyanate composites. Nucl. Instrum. Methods Phys. Res., Sect. B 312, 126–130 (2013). https://doi.org/10.1016/j.nimb.2013.07.017

    Article  Google Scholar 

  10. J.P. Mccaffrey, H. Shen, B. Downton et al., Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Med. Phys. 34, 530–537 (2007). https://doi.org/10.1118/1.2426404

    Article  Google Scholar 

  11. D.N.A. Dodoo-Amoo, S. Landsberger, J.M. MacDonald et al., Development of composite materials for non-leaded gloves for use in radiological hand protection. Health Phys. 84, 737–746 (2003). https://doi.org/10.1097/00004032-200306000-00006

    Article  Google Scholar 

  12. M.E. Cournoyer, G.L. George, R.L. Dodge et al. Replacement of lead-loaded glovebox glove with attenuation medium that are not RCRA-hazardous metals. 2010, 17th Pacific Basin Nuclear Conference Cancun mexico

  13. H. Chai, X.B. Tang, M.X. Ni et al., Preparation and properties of novel, flexible, lead-free X-ray-shielding materials containing tungsten and bismuth(III) oxide. J. Appl. Polym. Sci. 133, 43012–43018 (2016). https://doi.org/10.1002/app.43012

    Article  Google Scholar 

  14. M. Mirzaei Aliabadi, G. Naderi, S.J. Shahtaheri et al., Transport properties of carboxylated nitrile butadiene rubber (XNBR)-nanoclay composites; a promising material for protective gloves in occupational exposures. J. Environ. Health Sci. Eng. 12, 51–58 (2014). https://doi.org/10.1186/2052-336x-12-51

    Article  Google Scholar 

  15. M.A. Misman, A.R. Azura, Z.A.A. Hamid, The physical and degradation properties of starch-graft-acrylonitrile/carboxylated nitrile butadiene rubber latex films. Carbohydr. Polym. 128, 1–10 (2015). https://doi.org/10.1016/j.carbpol.2015.04.004

    Article  Google Scholar 

  16. K.P. Nair, A.B. Nair, R. Joseph, Carboxylated acrylo nitrile butadiene rubber latex/kaolin nanocomposites: preparation and properties. Compos. Interfaces 21, 571–583 (2014). https://doi.org/10.1080/15685543.2014.899198

    Article  Google Scholar 

  17. G. Marković, M.S. Marinović-Cincović, V. Jovanović et al., Gamma irradiation aging of NBR/CSM rubber nanocomposites. Compos. B Eng. 43, 609–615 (2012). https://doi.org/10.1016/j.compositesb.2011.11.056

    Article  Google Scholar 

  18. S.E. Gwaily, M. Madani, H.H. Hassan, Lead—Natural rubber composites as gamma radiation shields. II: high concentration. Polym. Compos. 23, 495–499 (2002). https://doi.org/10.1002/pc.10450

    Article  Google Scholar 

  19. S.A.M. Issa, A.M.A. Mostafa, Effect of Bi2O3 in borate-tellurite-silicate glass system for development of gamma-rays shielding materials. J. Alloys Compd. 695, 302–310 (2017). https://doi.org/10.1016/j.jallcom.2016.10.207

    Article  Google Scholar 

  20. W. Hao, Y. Gao, X. Jing et al., Visible light photocatalytic properties of metastable γ-Bi2O3 with different morphologies. J. Mater. Sci. Technol. 30, 192–196 (2014). https://doi.org/10.1016/j.jmst.2013.09.023

    Article  Google Scholar 

  21. B.A. Benetskii, M.V. Plotnikova, Gamma-radiation accumulation factors for composite materials and radiation shields. Bull. Lebedev. Phys. Inst. 39, 113–117 (2012). https://doi.org/10.3103/S1068335612040045

    Article  Google Scholar 

  22. V.P. Singh, S.P. Shirmardi, M.E. Medhat et al., Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation. Vacuum 119, 284–288 (2015). https://doi.org/10.1016/j.vacuum.2015.06.006

    Article  Google Scholar 

  23. S. Hariharan, R. Udayabhaskar, T.R. Ravindran et al., Surfactant assisted control on optical, fluorescence and phonon lifetime in α-Bi2O3 microrods. Spectrochim. Acta, Part A 163, 13–19 (2016). https://doi.org/10.1016/j.saa.2016.02.045

    Article  Google Scholar 

  24. S. Chakraborty, I. Sarkar, D.K. Behera et al., Experimental investigation on the effect of dispersant addition on thermal and rheological characteristics of TiO2 nanofluid. Powder Technol. 307, 10–24 (2017). https://doi.org/10.1016/j.powtec.2016.11.016

    Article  Google Scholar 

  25. P.C. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry (Marcel Dekker, New York, 1997)

    Book  Google Scholar 

  26. Z.N. Ain, A.R. Azura, Effect of different types of filler and filler loadings on the properties of carboxylated acrylonitrile–butadiene rubber latex films. J. Appl. Polym. Sci. 119, 2815–2823 (2011). https://doi.org/10.1002/app.32984

    Article  Google Scholar 

  27. M.R. Ambika, N. Nagaiah, V. Harish et al., Preparation and characterisation of Isophthalic-Bi2O3 polymer composite gamma radiation shields. Radiat. Phys. Chem. 130, 351–358 (2017). https://doi.org/10.1016/j.radphyschem.2016.09.022

    Article  Google Scholar 

  28. R. Sharma, M. Khanuja, S.N. Sharma et al., Reduced band gap & charge recombination rate in Se doped α-Bi2O3 leads to enhanced photoelectrochemical and photocatalytic performance: theoretical & experimental insight. Int. J. Hydrog. Energy 42, 20638–20648 (2017). https://doi.org/10.1016/j.ijhydene.2017.07.011

    Article  Google Scholar 

  29. L. Wang, W. Wang, Y. Fu et al., Enhanced electrical and mechanical properties of rubber/graphene film through layer-by-layer electrostatic assembly. Compos. Part B Eng. 90, 457–464 (2016). https://doi.org/10.1016/j.compositesb.2015.12.048

    Article  Google Scholar 

  30. X. He, T. Li, Z. Shi et al., Thermal-oxidative aging behavior of nitrile-butadiene rubber/functional LDHs composites. Polym. Degrad. Stab. 133, 219–226 (2016). https://doi.org/10.1016/j.polymdegradstab.2016.08.018

    Article  Google Scholar 

  31. A. Laskowska, M. Zaborski, G. Boiteux et al., Effects of unmodified layered double hydroxides MgAl-LDHs with various structures on the properties of filled carboxylated acrylonitrile–butadiene rubber XNBR. Eur. Polym. J. 60, 172–185 (2014). https://doi.org/10.1016/j.eurpolymj.2014.09.013

    Article  Google Scholar 

  32. R.L. Sala, T.M. Arantes, E. Longo et al., Evaluation of modified silica nanoparticles in carboxylated nitrile rubber nanocomposites. Colloids Surf. A 462, 45–51 (2014). https://doi.org/10.1016/j.colsurfa.2014.08.012

    Article  Google Scholar 

  33. Y. Han, L.X. Mao, H.W. Meng et al., Novel self-crosslinking film from hydrogenated carboxylated nitrile rubber latex. J. Appl. Polym. Sci. 131, 39865–39871 (2014). https://doi.org/10.1002/app.39865

    Google Scholar 

  34. G. Janowska, A. Kucharska-Jastrzabek, A. Kasiczak et al., Thermal properties and combustibility of cross-linked XNBR/CSM blends. J. Therm. Anal. Calorim. 104, 1107–1115 (2011). https://doi.org/10.1007/s10973-011-1328-9

    Article  Google Scholar 

  35. T. Biswas, D.K. Basu, Cure synergism in XNBR vulcanization in presence of thiophosphoryl disulfides and amine disulfide/thiazole accelerators. J. Appl. Polym. Sci. 60, 1349–1359 (1996). https://doi.org/10.1002/(sici)1097-4628(19960531)60:9<1349::aid-app10>3.0.co;2-y

    Article  Google Scholar 

  36. W. Qin, D. Peng, X. Wu et al., Study on the resistance performance of TiO2/cyanate ester nano-composites exposed to electron radiation. Nucl. Instrum. Methods Phys. Res., Sect. B 325, 115–119 (2014). https://doi.org/10.1016/j.nimb.2014.01.022

    Article  Google Scholar 

  37. I. Akkurt, A.M. El-Khayatt, The effect of barite proportion on neutron and gamma-ray shielding. Ann. Nucl. Energy 51, 5–9 (2013). https://doi.org/10.1016/j.anucene.2012.08.026

    Article  Google Scholar 

  38. S.A.M. Issa, Effective atomic number and mass attenuation coefficient of PbO–BaO–B2O3 glass system. Radiat. Phys. Chem. 120, 33–37 (2016). https://doi.org/10.1016/j.radphyschem.2015.11.025

    Article  Google Scholar 

  39. K. Kirdsiri, J. Kaewkhao, N. Chanthima et al., Comparative study of silicate glasses containing Bi2O3, PbO and BaO: radiation shielding and optical properties. Ann. Nucl. Energy 38, 1438–1441 (2011). https://doi.org/10.1016/j.anucene.2011.01.031

    Article  Google Scholar 

  40. S.M. Vahabi, M. Bahreinipour, M.S. Zafarghandi, Determining the mass attenuation coefficients for some polymers using MCNP code: a comparison study. Vacuum 136, 73–76 (2017). https://doi.org/10.1016/j.vacuum.2016.11.011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Chuan Liao or Peng-Cheng Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11405149) and the Military Technology Extension Project (No. JMZF201601).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, YC., Xu, DG. & Zhang, PC. Preparation and characterization of Bi2O3/XNBR flexible films for attenuating gamma rays. NUCL SCI TECH 29, 99 (2018). https://doi.org/10.1007/s41365-018-0436-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0436-7

Keywords

Navigation