Skip to main content
Log in

Chemical Redox-Modulated Etching of Plasmonic Nanoparticles for Nitrite Detection: Comparison Among Gold Nanosphere, Nanorod, and Nanotriangle

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Colorimetric detection based on etching of plasmonic nanoparticles represents a relatively new strategy compared to that based on aggregation-based assay. It has been attracting research interest due to its advantages of rapidity, cost-effectiveness, and straightforward signaling. Boosted by the development of solution-phase synthesis, a range of shape-controlled plasmonic nanoparticles has emerged and been widely employed for colorimetric detection, including nanospheres, nanorods and nanotriangles. It has also been an opening question that which nanoparticle shapes should be chosen for a given analytical applications based on etching of plasmonic nanoparticles. This study demonstrated a colorimetric nitrite detection based on chemical etching of gold nanoparticles. Using nitrite-accelerated oxidation of iodide ion (I), the plasmonic nanoparticles are rapidly etched by the oxidation product iodine (I2), leading to the formation of nanoparticles with etched morphology and shifted and plasmon resonance. Our results showed that gold nanosphere (AuNS) with large surface-area-to-volume (SAV) ratio and gold nanotriangle (AuNT) with sharp tips are highly active and afford fast etching in the presence of nitrite. The sensitivity of AuNS is higher than that of AuNT, and the detection limit is 4.5 μM. Gold nanorod (AuNR) exhibits a comparable detection sensitivity to the AuNT because of similar aspect ratio and SAV ratio, but the slowest etching among the three types of nanoparticles. Given the high sensitivity and stability, the AuNSs are recommended for nitrite detection, and have been applied in the detection of drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xiao N, Yu C. Rapid-response and highly sensitive non-cross-linking colorimetric nitrite sensor using 4-aminothiophenol modified gold nanorods. Anal Chem. 2010;82:3659–63.

    Article  CAS  PubMed  Google Scholar 

  2. Wang QH, Yu LJ, Liu Y, Lin L, Lu RG, Zhu JP, He L, Lu ZL. Methods for the detection and determination of nitrite and nitrate: a review. Talanta. 2017;165:709–20.

    Article  CAS  PubMed  Google Scholar 

  3. Gill A, Zajda J, Meyerhoff ME. Comparison of electrochemical nitric oxide detection methods with chemiluminescence for measuring nitrite concentration in food samples. Anal Chim Acta. 2019;1077:167–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Honikel K-O. The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 2008;78:68–76.

    Article  CAS  PubMed  Google Scholar 

  5. Rabti A, Ben Aoun S, Raouafi N. A sensitive nitrite sensor using an electrode consisting of reduced graphene oxide functionalized with ferrocene. Microchim Acta. 2016;183:3111–7.

    Article  CAS  Google Scholar 

  6. Fan AM, Steinberg VE. Health implications of nitrate and nitrite in drinking water: an update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regul Toxicol Pharmacol. 1996;23:35–43.

    Article  CAS  PubMed  Google Scholar 

  7. Li D, Ma Y, Duan H, Deng W, Li D. Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite. Biosens Bioelectron. 2018;99:389–98.

    Article  CAS  PubMed  Google Scholar 

  8. Gopalan AI, Lee KP, Komathi S. Bioelectrocatalytic determination of nitrite ions based on polyaniline grafted nanodiamond. Biosens Bioelectron. 2010;26:1638–43.

    Article  CAS  PubMed  Google Scholar 

  9. Ma X, Gao F, Liu G, Xie Y, Tu X, Li Y, Dai R, Qu F, Wang W, Lu L. Sensitive determination of nitrite by using an electrode modified with hierarchical three-dimensional tungsten disulfide and reduced graphene oxide aerogel. Microchim Acta. 2019;186:291.

    Article  Google Scholar 

  10. Su Z, Wang X, Luo M, Li L, Tu Y, Yan J. Fluorometric determination of nitrite through its catalytic effect on the oxidation of iodide and subsequent etching of gold nanoclusters by free iodine. Microchim Acta. 2019;186:619.

    Article  Google Scholar 

  11. Nesakumar N, Kesavan S, Li CZ, Alwarappan S. Microfluidic electrochemical devices for biosensing. J Anal Test. 2019;3:3–18.

    Article  Google Scholar 

  12. Dai Z, Guo J, Xu J, Liu C, Gao Z, Song YY. Target-driven nanozyme growth in TiO2 nanochannels for improving selectivity in electrochemical biosensing. Anal Chem. 2020;92:10033–41.

    Article  CAS  PubMed  Google Scholar 

  13. Jian X, Li Y, Zhao C, Chang Y, Gao Z, Song YY. Introducing graphitic carbon nitride nanosheets as supersandwich-type assembly on porous electrode for ultrasensitive electrochemiluminescence immunosensing. Anal Chim Acta. 2020;1097:62–70.

    Article  CAS  PubMed  Google Scholar 

  14. Singh P, Singh MK, Beg YR, Nishad GR. A review on spectroscopic methods for determination of nitrite and nitrate in environmental samples. Talanta. 2019;191:364–81.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Z, Wang H, Chen Z, Wang X, Choo J, Chen L. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: strategies and applications. Biosens Bioelectron. 2018;114:52–65.

    Article  CAS  PubMed  Google Scholar 

  16. Hu H, Gao W, Zang R, Gao J, Tang S, Li X, Liang L, Zhang H, Cao H. Direct growth of vertically orientated nanocavity arrays for plasmonic color generation. Adv Funct Mater. 2020;30:2002287.

    Article  CAS  Google Scholar 

  17. Chang CC, Chen CP, Wu TH, Yang CH, Lin CW, Chen CY. Gold nanoparticle-based colorimetric strategies for chemical and biological sensing applications. Nanomaterials. 2019;9:861.

    Article  CAS  PubMed Central  Google Scholar 

  18. Liu L, Jiang H, Wang X. Bivalent metal ions tethered fluorescent gold nanoparticles as a reusable peroxidase mimic nanozyme. J Anal Test. 2019;3:269–76.

    Article  Google Scholar 

  19. Xu J, Liu N, Wu D, Gao Z, Song YY, Schmuki P. Upconversion nanoparticle-assisted payload delivery from TiO2 under near-infrared light irradiation for bacterial inactivation. ACS Nano. 2020;14:337–46.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Zhang L, Wang L, Wang G, Komiyama M, Liang X. Colorimetric determination of mercury (II) ion based on DNA-assisted amalgamation: a comparison study on gold, silver and Ag@Au Nanoplates. Microchim Acta. 2019;186:713.

    Article  Google Scholar 

  21. Wang G, Wang Y, Chen L, Choo J. Nanomaterial-assisted aptamers for optical sensing. Biosens Bioelectron. 2010;25:1859–68.

    Article  CAS  PubMed  Google Scholar 

  22. Ghosh SK, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem Rev. 2007;107:4797–862.

    Article  CAS  PubMed  Google Scholar 

  23. Wang G, Akiyama Y, Shiraishi S, Kanayama N, Takarada T, Maeda M. Cross-linking versus non-cross-linking aggregation of gold nanoparticles induced by DNA hybridization: a comparison of the rapidity of solution color change. Bioconjugate Chem. 2017;28:270–7.

    Article  CAS  Google Scholar 

  24. Zhou M, Han L, He H, Deng D, Zhang L, Yan X, Wu Z, Zhu Y, Luo L. Sensitive and selective determination of Cu2+ using self-assembly of 4-mercaptobenzoic acid on gold Nanoparticles. J Anal Test. 2019;3:306–12.

    Article  Google Scholar 

  25. Daniel WL, Han MS, Lee JS, Mirkin CA. Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points. J Am Chem Soc. 2009;131:6362–3.

    Article  CAS  PubMed  Google Scholar 

  26. Wang G, Chen Z, Wang W, Yan B, Chen L. Chemical redox-regulated mesoporous silica-coated gold nanorods for colorimetric probing of Hg2+ and S2-. Analyst. 2011;136:174–8.

    Article  CAS  PubMed  Google Scholar 

  27. Amanulla B, Palanisamy S, Chen SM, Chiu TW, Velusamy V, Hall JM, Chen TW, Ramaraj SK. Selective colorimetric detection of nitrite in water using chitosan stabilized gold nanoparticles decorated reduced graphene oxide. Sci Rep. 2017;7:1–9.

    Article  CAS  Google Scholar 

  28. Tian F, Fu R, Zhou J, Cui Y, Zhang Y, Jiao B, He Y. Manganese dioxide nanosheet-mediated etching of gold nanorods for a multicolor colorimetric assay of total antioxidant capacity. Sens Actuators B Chem. 2020;321:128604.

    Article  CAS  Google Scholar 

  29. Liu BW, Huang PC, Wu FY. Smartphone colorimetric assay of acid phosphatase based on a controlled iodine-mediated etching of gold nanorods. Anal Bioanal Chem. 2020;412:8051–9.

    Article  PubMed  Google Scholar 

  30. Bratsch SG. Standard electrode potentials and temperature coefficients in water at 29815 K. J Phys Chem Ref Data. 1989;18:1–21.

    Article  CAS  Google Scholar 

  31. Chen Z, Zhang Z, Qu C, Pan D, Chen L. Highly sensitive label-free colorimetric sensing of nitrite based on etching of gold nanorods. Analyst. 2012;137:5197–200.

    Article  CAS  PubMed  Google Scholar 

  32. Li T, Li Y, Zhang Y, Dong C, Shen Z, Wu A. A colorimetric nitrite detection system with excellent selectivity and high sensitivity based on Ag@ Au nanoparticles. Analyst. 2015;140:1076–81.

    Article  CAS  PubMed  Google Scholar 

  33. Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater. 2003;15:1957–62.

    Article  CAS  Google Scholar 

  34. Jana NR, Gearheart L, Murphy CJ. Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir. 2001;17:6782–6.

    Article  CAS  Google Scholar 

  35. Chen L, Ji F, Xu Y, He L, Mi Y, Bao F, Sun B, Zhang X, Zhang Q. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 2014;14:7201–6.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao C, Wang G, Takarada T, Liang X, Komiyama M, Maeda M. Shape-selective isolation of Au nanoplates from complex colloidal media by depletion flocculation. Colloids Surf A Physicochem Eng Asp. 2019;568:216–23.

    Article  CAS  Google Scholar 

  37. Liu J. Adsorption of DNA onto gold nanoparticles and graphene oxide: Surface science and applications. Phys Chem Chem Phys. 2012;14:10485–96.

    Article  CAS  PubMed  Google Scholar 

  38. Huang X, Neretina S, El-Sayed MA. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv Mater. 2009;21:4880–910.

    Article  CAS  PubMed  Google Scholar 

  39. Chang C-C, Wang G, Takarada T, Maeda M. Iodine-mediated etching of triangular gold nanoplates for colorimetric sensing of copper ion and aptasensing of chloramphenicol. ACS Appl Mater Interfaces. 2017;9:34518–25.

    Article  CAS  PubMed  Google Scholar 

  40. Moorcroft MJ, Davis J, Compton RG. Detection and determination of nitrate and nitrite: a review. Talanta. 2001;54:785–803.

    Article  CAS  PubMed  Google Scholar 

  41. Wang G, Akiyama Y, Takarada T, Maeda M. Rapid non-crosslinking aggregation of DNA-functionalized gold nanorods and nanotriangles for colorimetric single-nucleotide discrimination. Chem-Eur J. 2016;22:258–63.

    Article  PubMed  Google Scholar 

  42. Liu A, Wang G, Wang F, Zhang Y. Gold nanostructures with near-infrared plasmonic resonance: Synthesis and surface functionalization. Coord Chem Rev. 2017;336:28–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in-part by a Natural Science Foundation of China for Young Researchers (No. 21805263), and a Shandong Provincial Natural Science Foundation (ZR2019QC011). The financial support by a Shandong Provincial Soft Science Research Program (2019RKE29001) and a Fundamental Research Funds for the Central Universities is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqing Wang.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

41664_2021_153_MOESM1_ESM.docx

Supplementary file1 (DOCX 1565 KB) Supporting Information. Experimental details for synthesizing CTAB-capped AuNS, AuNR and AuNT, additional spectral analysis and control experimental results.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Zhang, L., Peng, G. et al. Chemical Redox-Modulated Etching of Plasmonic Nanoparticles for Nitrite Detection: Comparison Among Gold Nanosphere, Nanorod, and Nanotriangle. J. Anal. Test. 5, 350–359 (2021). https://doi.org/10.1007/s41664-021-00153-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-021-00153-4

Keywords

Navigation