Skip to main content
Log in

DNA Nanotechnology for Multimodal Synergistic Theranostics

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

A Correction to this article was published on 03 July 2021

This article has been updated

Abstract

Over the past decade, DNA nanotechnology has developed rapidly due to its unique characteristics, such as excellent biocompatibility, high programmability, good predictability, automatically chemical synthesis, and so on. So far, a variety of DNA-based nanostructures, from small to large and simple to complex, have been designed and synthesized with controllable size and shape in one, two, or three dimensions. Therefore, DNA has become a kind of competitive materials for biosensing, bioimaging and biomedicine. In particular, the integration of DNA nanotechnology with multimodal synergistic theranostics can not only achieve accurate cancer diagnosis by the sensitive and accurate detection of cancer biomarkers, but also achieve enhanced anti-cancer therapeutic efficacy, which promote the development of DNA nanotechnology and nanomedicine. In this review, we first give a comprehensive introduction of DNA nanotechnology, and then summarize the DNA self-assembly and amplification strategies for the construction of functional nanoplatforms for multimodal synergistic theranostics. Finally, the challenges and opportunities faced by DNA nanotechnology in biomedicine are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Kallenbach NR, Ma RI, Seeman NC. An immobile nucleic-acid junction constructed from oligonucleotides. Nature. 1983;305(5937):829–31.

    CAS  Google Scholar 

  2. Seeman NC, Sleiman HF. DNA nanotechnology. Nat Rev Mater. 2018;3(1):17068.

    CAS  Google Scholar 

  3. Hai X, Li Y, Zhu C, Song W, Cao J, Bi S. DNA-based label-free electrochemical biosensors: from principles to applications. Trends Anal Chem. 2020;133:116098.

    CAS  Google Scholar 

  4. Yang D, Campolongo MJ, Tran TNN, Ruiz RCH, Kahn JS, Luo D. Novel DNA materials and their applications. WIREs Nanomed Nanobiotechnol. 2010;2(6):648–69.

    CAS  Google Scholar 

  5. Tan LH, Xing H, Lu Y. DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles. Acc Chem Res. 2014;47(6):1881–90.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Li BL, Setyawati MI, Chen L, Xie J, Ariga K, Lim CT, Garaj S, Leong DT. Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for drug delivery. ACS Appl Mater Interfaces. 2017;9(18):15286–96.

    PubMed  CAS  Google Scholar 

  7. Xia Z, Wang P, Liu X, Liu T, Yan Y, Yan J, Zhong J, Sun G, He D. Tumor-penetrating peptide-modified DNA tetrahedron for targeting drug delivery. Biochemistry. 2016;55(9):1326–31.

    PubMed  CAS  Google Scholar 

  8. Qu Y, Yang J, Zhan P, Liu S, Zhang K, Jiang Q, Li C, Ding B. Self-assembled DNA dendrimer nanoparticle for efficient delivery of immunostimulatory CpG motifs. ACS Appl Mater Interfaces. 2017;9(24):20324–9.

    PubMed  CAS  Google Scholar 

  9. Sun W, Ji W, Hall JM, Hu Q, Wang C, Beisel CL, Gu Z. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Ed. 2015;54(41):12029–33.

    CAS  Google Scholar 

  10. Wang C, Sun W, Wright G, Wang AZ, Gu Z. Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody. Adv Mater. 2016;28(40):8912–20.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhang L, Wan S, Jiang Y, Wang Y, Fu T, Liu Q, Cao Z, Qiu L, Tan W. Molecular elucidation of disease biomarkers at the interface of chemistry and biology. J Am Chem Soc. 2017;139(7):2532–40.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Wang S, Zhang L, Wan S, Cansiz S, Cui C, Liu Y, Cai R, Hong C, Teng I-T, Shi M, Wu Y, Dong Y, Tan W. Aptasensor with expanded nucleotide using DNA nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano. 2017;11(4):3943–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Hu L, Lu CH, Willner I. Switchable catalytic DNA catenanes. Nano Lett. 2015;15(3):2099–103.

    PubMed  CAS  Google Scholar 

  14. Chen WH, Yu X, Cecconello A, Sohn YS, Nechushtai R, Willner I. Stimuli-responsive nucleic acid-functionalized metal-organic framework nanoparticles using pH- and metal-ion-dependent DNAzymes as locks. Chem Sci. 2017;8(8):5769–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Yan R, Chen J, Wang J, Rao J, Du X, Liu Y, Zhang L, Qiu L, Liu B, Zhao YD, Jiang P, Chen C, Li YQ. A nanoflare-based strategy for in situ tumor margin demarcation and neoadjuvant gene/photothermal therapy. Small. 2018;14(50):e1802745.

    PubMed  Google Scholar 

  16. Chen Z, Niu M, Chen G, Wu Q, Tan L, Fu C, Ren X, Zhong H, Xu K, Meng X. Oxygen production of modified core-shell CuO@ZrO2 nanocomposites by microwave radiation to alleviate cancer hypoxia for enhanced chemo-microwave thermal therapy. ACS Nano. 2018;12(12):12721–32.

    PubMed  CAS  Google Scholar 

  17. Peng S, He Y, Er M, Sheng Y, Gu Y, Chen H. Biocompatible CuS-based nanoplatforms for efficient photothermal therapy and chemotherapy in vivo. Biomater Sci. 2017;5(3):475–84.

    PubMed  CAS  Google Scholar 

  18. Yu S, Zhou Y, Sun Y, Wu S, Xu T, Cheng Y-C, Bi S, Jiang L-P, Zhu J-J. Endogenous mRNA triggered DNA-Au nanomachine for in situ imaging and targeted multimodal synergistic cancer therapy. Angew Chem Int Ed. 2021;60(11):5948–58.

    CAS  Google Scholar 

  19. He C, Lu J, Lin W. Hybrid nanoparticles for combination therapy of cancer. J Control Release. 2015;219:224–36.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhang X, Xi Z, Machuki JO, Luo J, Yang D, Li J, Cai W, Yang Y, Zhang L, Tian J, Guo K, Yu Y, Gao F. Gold cube-in-cube based oxygen nanogenerator: a theranostic nanoplatform for modulating tumor microenvironment for precise chemo-phototherapy and multimodal imaging. ACS Nano. 2019;13(5):5306–25.

    PubMed  CAS  Google Scholar 

  21. Yang XJ, Li XL, Chen HY, Xu JJ. NIR-activated spatiotemporally controllable nanoagent for achieving synergistic gene-chemo-photothermal therapy in tumor ablation. ACS Appl Bio Mater. 2019;2(7):2994–3001.

    CAS  PubMed  Google Scholar 

  22. Zhang J, Cui YX, Feng XN, Cheng M, Tang AN, Kong DM. pH-controlled intracellular in situ reversible assembly of a photothermal agent for smart chemo-photothermal synergetic therapy and ATP imaging. ACS Appl Mater Interfaces. 2019;11(43):39624–32.

    PubMed  CAS  Google Scholar 

  23. Hai L, Jia X, He D, Zhang A, Wang T, Cheng H, He X, Wang K. DNA-functionalized hollow mesoporous silica nanoparticles with dual cargo loading for near-infrared-responsive synergistic chemo-photothermal treatment of cancer cells. ACS Appl Nano Mater. 2018;1(7):3486–97.

    CAS  Google Scholar 

  24. Wei H, Zhao Z, Wang Y, Zou J, Lin Q, Duan Y. One-step self-assembly of multifunctional DNA nanohydrogels: an enhanced and harmless strategy for guiding combined antitumor therapy. ACS Appl Mater Interfaces. 2019;11(50):46479–89.

    PubMed  CAS  Google Scholar 

  25. Fan W, Shen B, Bu W, Chen F, He Q, Zhao K, Zhang S, Zhou L, Peng W, Xiao Q, Ni D, Liu J, Shi J. A smart upconversion-based mesoporous silica nanotheranostic system for synergetic chemo-/radio-/photodynamic therapy and simultaneous MR/UCL imaging. Biomaterials. 2014;35(32):8992–9002.

    PubMed  CAS  Google Scholar 

  26. Lee H, Lytton-Jean AK, Chen Y, Love KT, Park AI, Karagiannis ED, Sehgal A, Querbes W, Zurenko CS, Jayaraman M, Peng CG, Charisse K, Borodovsky A, Manoharan M, Donahoe JS, Truelove J, Nahrendorf M, Langer R, Anderson DG. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol. 2012;7(6):389–93.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Bathe M, Rothemund PWK. DNA nanotechnology: a foundation for programmable nanoscale materials. MRS Bull. 2017;42(12):882–8.

    CAS  Google Scholar 

  28. Pei H, Zuo X, Zhu D, Huang Q, Fan C. Functional DNA nanostructures for theranostic applications. Acc Chem Res. 2014;47(2):550–9.

    PubMed  CAS  Google Scholar 

  29. Zhang F, Nangreave J, Liu Y, Yan H. Structural DNA nanotechnology: state of the art and future perspective. J Am Chem Soc. 2014;136(32):11198–211.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Yu S, Wang Y, Jiang LP, Bi S, Zhu JJ. Cascade amplification-mediated in situ hot-spot assembly for microRNA detection and molecular logic gate operations. Anal Chem. 2018;90(7):4544–51.

    PubMed  CAS  Google Scholar 

  31. Seeman NC. Nucleic-acid junctions and lattices. J theor Biol. 1982;99(2):237–47.

    PubMed  CAS  Google Scholar 

  32. Yue S, Song X, Song W, Bi S. An enzyme-free molecular catalytic device: dynamically self-assembled DNA dendrimers for in situ imaging of microRNAs in live cells. Chem Sci. 2019;10(6):1651–8.

    PubMed  CAS  Google Scholar 

  33. Rothemund PWK. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440(7082):297–302.

    PubMed  CAS  Google Scholar 

  34. Rajendran A, Endo M, Katsuda Y, Hidaka K, Sugiyama H. Programmed two-dimensional self-assembly of multiple DNA origami jigsaw pieces. ACS Nano. 2011;5(1):665–71.

    PubMed  CAS  Google Scholar 

  35. Zhang F, Jiang S, Wu S, Li Y, Mao C, Liu Y, Yan H. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat Nanotechnol. 2015;10(9):779–84.

    PubMed  CAS  Google Scholar 

  36. Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W, Golas MM, Sander B, Stark H, Oliveira CLP, Pedersen JS, Birkedal V, Besenbacher F, Gothelf KV, Kjems J. Self-assembly of a nanoscale DNA box with a controllable lid. Nature. 2009;459(7243):73–6.

    PubMed  CAS  Google Scholar 

  37. Douglas SM, Dietz H, Liedl T, Hogberg B, Graf F, Shih WM. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature. 2009;459(7245):414–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Powell JT, Akhuetie-Oni BO, Zhang Z, Lin C. DNA origami rotaxanes: tailored synthesis and controlled structure switching. Angew Chem Int Ed. 2016;55(38):11412–6.

    CAS  Google Scholar 

  39. Hong F, Zhang F, Liu Y, Yan H. DNA origami: scaffolds for creating higher order structures. Chem Rev. 2017;117(20):12584–640.

    PubMed  CAS  Google Scholar 

  40. Sun L, Gao Y, Xu Y, Chao J, Liu H, Wang L, Li D, Fan C. Real-time imaging of single-molecule enzyme cascade using a DNA origami raft. J Am Chem Soc. 2017;139(48):17525–32.

    PubMed  CAS  Google Scholar 

  41. Yang L, Zhang K, Bi S, Zhu JJ. Dual-acceptor-based upconversion luminescence nanosensor with enhanced quenching efficiency for in situ imaging and quantification of microRNA in living cells. Acs Appl Mater Interfaces. 2019;11(42):38459–66.

    PubMed  CAS  Google Scholar 

  42. Zhang Q, Jiang Q, Li N, Dai L, Liu Q, Song L, Wang J, Li Y, Tian J, Ding B, Du Y. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano. 2014;8(7):6633–43.

    PubMed  CAS  Google Scholar 

  43. Zhuang X, Ma X, Xue X, Jiang Q, Song L, Dai L, Zhang C, Jin S, Yang K, Ding B, Wang PC, Liang X-J. A photosensitizer-loaded DNA origami nanosystem for photodynamic therapy. ACS Nano. 2016;10(3):3486–95.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Li J, Mo L, Lu CH, Fu T, Yang HH, Tan W. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chem Soc Rev. 2016;45(5):1410–31.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Kim MG, Shon Y, Miao W, Lee J, Oh YK. Biodegradable graphene oxide and polyaptamer DNA hybrid hydrogels for implantable drug delivery. Carbon. 2016;105:14–22.

    CAS  Google Scholar 

  46. Okay O. DNA hydrogels: new functional soft materials. J Polym Sci, Part B: Polym Phys. 2011;49(8):551–6.

    CAS  Google Scholar 

  47. Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science. 2012;336(6085):1124–8.

    PubMed  CAS  Google Scholar 

  48. Yan Y, Shi P, Song W, Bi S. Chemiluminescence and bioluminescence imaging for biosensing and therapy: in vitro and in vivo perspectives. Theranostics. 2019;9(14):4047–65.

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Bi S, Xiu B, Ye J, Dong Y. Target-catalyzed DNA four-way junctions for cret imaging of microRNA, concatenated logic operations, and self-assembly of DNA nanohydrogels for targeted drug delivery. ACS Appl Mater Interfaces. 2015;7(41):23310–9.

    PubMed  CAS  Google Scholar 

  50. Um SH, Lee JB, Park N, Kwon SY, Umbach CC, Luo D. Enzyme-catalysed assembly of DNA hydrogel. Nat Mater. 2006;5(10):797–801.

    PubMed  CAS  Google Scholar 

  51. Cheng E, Xing Y, Chen P, Yang Y, Sun Y, Zhou D, Xu L, Fan Q, Liu D. A pH-triggered, fast-responding DNA hydrogel. Angew Chem Int Ed. 2009;48(41):7660–3.

    CAS  Google Scholar 

  52. Lu CH, Qi XJ, Orbach R, Yang HH, Mironi-Harpaz I, Seliktar D, Willner I. Switchable catalytic acrylamide hydrogels cross-linked by hemin/G-quadruplexes. Nano Lett. 2013;13(3):1298–302.

    PubMed  CAS  Google Scholar 

  53. Guo W, Lu CH, Qi XJ, Orbach R, Fadeev M, Yang HH, Willner I. Switchable bifunctional stimuli-triggered poly-N-isopropylacrylamide/DNA hydrogels. Angew Chem Int Ed. 2014;53(38):10134–8.

    CAS  Google Scholar 

  54. Simon AJ, Walls-Smith LT, Freddi MJ, Fong FY, Gubala V, Plaxco KW. Simultaneous measurement of the dissolution kinetics of responsive DNA hydrogels at multiple length scales. ACS Nano. 2017;11(1):461–8.

    PubMed  CAS  Google Scholar 

  55. Lilienthal S, Fischer A, Liao WC, Cazelles R, Willner I. Single and bilayerpolyacrylamide hydrogel-based microcapsules for the triggered release of loads, logic gate operations, and intercommunication between microcapsules. ACS Appl Mater Interfaces. 2020;12(28):31124–36.

    PubMed  CAS  Google Scholar 

  56. Yang D, Hartman MR, Derrien TL, Hamada S, An D, Yancey KG, Cheng R, Ma M, Luo D. DNA materials: bridging nanotechnology and biotechnology. Acc Chem Res. 2014;47(6):1902–11.

    PubMed  CAS  Google Scholar 

  57. Chen T, Ren L, Liu X, Zhou M, Li L, Xu J, Zhu X. DNA nanotechnology for cancer diagnosis and therapy. Int J Mol Sci. 2018;19(6):1671.

    PubMed Central  Google Scholar 

  58. Shi JF, Bergstrom DE. Assembly of novel DNA cycles with rigid tetrahedral linkers. Angew Chem Int Ed Engl. 1997;36(1–2):111–3.

    CAS  Google Scholar 

  59. Aldaye FA, Sleiman HF. Sequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticles. Angew Chem Int Ed. 2006;45(14):2204–9.

    CAS  Google Scholar 

  60. Edwardson TGW, Carneiro KMM, McLaughlin CK, Serpell CJ, Sleiman HF. Site-specific positioning of dendritic alkyl chains on DNA cages enables their geometry-dependent self-assembly. Nat Chem. 2013;5(10):868–75.

    PubMed  CAS  Google Scholar 

  61. Rane TD, Armani AM. Two-photon microscopy analysis of gold nanoparticle uptake in 3D cell spheroids. PLoS ONE. 2016;11(12):e0167548.

    PubMed  PubMed Central  Google Scholar 

  62. Qian RC, Cao Y, Long YT. Binary system for microRNA-targeted imaging in single cells and photothermal cancer therapy. Anal Chem. 2016;88(17):8640–7.

    PubMed  CAS  Google Scholar 

  63. Sun Z, Zhou X, Luo W, Yue Q, Zhang Y, Cheng X, Li W, Kong B, Deng Y, Zhao D. Interfacial engineering of magnetic particles with porous shells: towards magnetic core-porous shell microparticles. Nano Today. 2016;11(4):464–82.

    CAS  Google Scholar 

  64. Yao C, Yuan Y, Yang D. Magnetic DNA nanogels for targeting delivery and multistimuli-triggered release of anticancer drugs. ACS Appl Bio Mater. 2018;1(6):2012–20.

    CAS  PubMed  Google Scholar 

  65. Wang Z, Zhao J, Bao J, Dai Z. Construction of metal-ion-free G-quadruplex-hemin DNAzyme and its application in S1 nuclease detection. ACS Appl Mater Interfaces. 2016;8(1):827–33.

    PubMed  Google Scholar 

  66. Abdelhamid MAS, Gates AJ, Waller ZAE. Destabilization of i-motif DNA at neutral pH by G-quadruplex ligands. Biochemistry. 2019;58(4):245–9.

    PubMed  CAS  Google Scholar 

  67. Acharya AP, Sinha M, Ratay ML, Ding X, Balmert SC, Workman CJ, Wang Y, Vignali DAA, Little SR. Localized multi-component delivery platform generates local and systemic anti-tumor immunity. Adv Funct Mater. 2017;27(5):1604366.

    Google Scholar 

  68. Yang Y, Zhu W, Feng L, Chao Y, Yi X, Dong Z, Yang K, Tan W, Liu Z, Chen M. G-quadruplex-based nanoscale coordination polymers to modulate tumor hypoxia and achieve nuclear-targeted drug delivery for enhanced photodynamic therapy. Nano Lett. 2018;18(11):6867–75.

    PubMed  CAS  Google Scholar 

  69. Yue S, Zhao T, Qi H, Yan Y, Bi S. Cross-catalytic hairpin assembly-based exponential signal amplification for CRET assay with low background noise. Biosens Bioelectron. 2017;94:671–6.

    PubMed  CAS  Google Scholar 

  70. Yan Y, Yue S, Zhao T, Luo B, Bi S. Exonuclease-assisted target recycling amplification for label-free chemiluminescence assay and molecular logic operations. Chem Commun. 2017;53(90):12201–4.

    CAS  Google Scholar 

  71. Bi S, Ye J, Dong Y, Li H, Cao W. Target-triggered cascade recycling amplification for label-free detection of microRNA and molecular logic operations. Chem Commun. 2016;52(2):402–5.

    CAS  Google Scholar 

  72. Bi S, Jia X, Ye J, Dong Y. Linear light-scattering of gold nanostars for versatile biosensing of nucleic acids and proteins using exonuclease III as biocatalyst to signal amplification. Biosens Bioelectron. 2015;71:427–33.

    PubMed  CAS  Google Scholar 

  73. Bi S, Zhang Z, Dong Y, Wang Z. Chemiluminescence resonance energy transfer imaging on magnetic particles for single-nucleotide polymorphism detection based on ligation chain reaction. Biosens Bioelectron. 2015;65:139–44.

    PubMed  CAS  Google Scholar 

  74. Spata MO, Castagna ME, Conoci S. Image data analysis in qPCR: a method for smart analysis of DNA amplification. Sens BioSensing Res. 2015;6:79–84.

    Google Scholar 

  75. Navarro E, Serrano-Heras G, Castano MJ, Solera J. Real-time PCR detection chemistry. Clin Chim Acta. 2015;439:231–50.

    PubMed  CAS  Google Scholar 

  76. Daher RK, Stewart G, Boissinot M, Bergeron MG. Recombinase polymerase amplification for diagnostic applications. Clin Chem. 2016;62(7):947–58.

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Ali MM, Li F, Zhang Z, Zhang K, Kang DK, Ankrum JA, Le XC, Zhao W. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev. 2014;43(10):3324–41.

    PubMed  CAS  Google Scholar 

  78. Li W, Yang X, He L, Wang K, Wang Q, Huang J, Liu J, Wu B, Xu C. Self-assembled DNA nanocentipede as multivalent drug carrier for targeted delivery. ACS Appl Mater Interfaces. 2016;8(39):25733–40.

    PubMed  CAS  Google Scholar 

  79. Yan Y, Li J, Li W, Wang Y, Song W, Bi S. DNA flower-encapsulated horseradish peroxidase with enhanced biocatalytic activity synthesized by an isothermal one-pot method based on rolling circle amplification. Nanoscale. 2018;10(47):22456–65.

    PubMed  CAS  Google Scholar 

  80. Qi H, Yue S, Bi S, Ding C, Song W. Isothermal exponential amplification techniques: from basic principles to applications in electrochemical biosensors. Biosens Bioelectron. 2018;110:207–17.

    PubMed  CAS  Google Scholar 

  81. Qi H, Yue S, Bi S, Song W, Ding C. A versatile homogeneous chemiluminescence biosensing platform based on exonuclease-assisted hybridization chain reaction. Sens Actuators B Chem. 2018;273:1525–31.

    CAS  Google Scholar 

  82. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230(4732):1350.

    PubMed  CAS  Google Scholar 

  83. Chen CF, Ridzon DA, Broomer AJ, Zhou ZH, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Lao KQ, Livak KJ, Guegler KJ. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33(20):e179.

    PubMed  PubMed Central  Google Scholar 

  84. Yue S, Li Y, Qiao Z, Song W, Bi S. Rolling circle replication for biosensing, bioimaging, and biomedicine. Trends Biotechnol. 2021. https://doi.org/10.1016/j.tibtech.2021.02.007.

    Article  PubMed  Google Scholar 

  85. Yan Y, Qiao Z, Hai X, Song W, Bi S. Versatile electrochemical biosensor based on bi-enzyme cascade biocatalysis spatially regulated by DNA architecture. Biosens Bioelectron. 2021;174:112827.

    PubMed  CAS  Google Scholar 

  86. Wang S, Bi S, Wang Z, Xia J, Zhang F, Yang M, Gui R, Li Y, Xia Y. A plasmonic aptasensor for ultrasensitive detection of thrombin via arrested rolling circle amplification. Chem Commun. 2015;51(37):7927–30.

    CAS  Google Scholar 

  87. Goransson J, Ke R, Nong RY, Howell WM, Karman A, Grawe J, Stenberg J, Granberg M, Elgh M, Herthnek D, Wikström P, Jarvius J, Nilsson M. Rapid identification of bio-molecules applied for detection of biosecurity agents using rolling circle amplification. PLoS ONE. 2012;7(2):e31068.

    PubMed  PubMed Central  Google Scholar 

  88. Murakami T, Sumaoka J, Komiyama M. Sensitive RNA detection by combining three-way junction formation and primer generation-rolling circle amplification. Nucleic Acids Res. 2012;40(3):e22.

    PubMed  CAS  Google Scholar 

  89. Kim E, Zwi-Dantsis L, Reznikov N, Hansel CS, Agarwal S, Stevens MM. One-pot synthesis of multiple protein-encapsulated DNA flowers and their application in intracellular protein delivery. Adv Mater. 2017;29(26):1701086.

    Google Scholar 

  90. Zhang Z, Ali MM, Eckert MA, Kang DK, Chen YY, Sender LS, Fruman DA, Zhao W. A polyvalent aptamer system for targeted drug delivery. Biomaterials. 2013;34(37):9728–35.

    PubMed  CAS  Google Scholar 

  91. Yue S, Zhao T, Bi S, Zhang Z. Programmable strand displacement-based magnetic separation for simultaneous amplified detection of multiplex microRNAs by chemiluminescence imaging array. Biosens Bioelectron. 2017;98:234–9.

    PubMed  CAS  Google Scholar 

  92. Bi S, Yue S, Wu Q, Ye J. Initiator-catalyzed self-assembly of duplex-looped DNA hairpin motif based on strand displacement reaction for logic operations and amplified biosensing. Biosens Bioelectron. 2016;83:281–6.

    PubMed  CAS  Google Scholar 

  93. Chu H, Zhao J, Mi Y, Zhao Y, Li L. Near-infrared light-initiated hybridization chain reaction for spatially and temporally resolved signal amplification. Angew Chem Int Ed. 2019;58(42):14877–81.

    CAS  Google Scholar 

  94. Bi S, Yue S, Zhang S. Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem Soc Rev. 2017;46(14):4281–98.

    PubMed  CAS  Google Scholar 

  95. Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci USA. 2004;101(43):15275–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Bi S, Yue S, Wu Q, Ye J. Triggered and catalyzed self-assembly of hyperbranched DNA structures for logic operations and homogeneous CRET biosensing of microRNA. Chem Commun. 2016;52(31):5455–8.

    CAS  Google Scholar 

  97. Xuan F, Hsing IM. Triggering hairpin-free chain-branching growth of fluorescent DNA dendrimers for nonlinear hybridization chain reaction. J Am Chem Soc. 2014;136(28):9810–3.

    PubMed  CAS  Google Scholar 

  98. Bi S, Chen M, Jia X, Dong Y, Wang Z. Hyperbranched hybridization chain reaction for triggered signal amplification and concatenated logic circuits. Angew Chem Int Ed. 2015;54(28):8144–8.

    CAS  Google Scholar 

  99. Zhu G, Zheng J, Song E, Donovan M, Zhang K, Liu C, Tan W. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc Natl Acad Sci U S A. 2013;110(20):7998–8003.

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Qin SY, Zhang AQ, Cheng SX, Rong L, Zhang XZ. Drug self-delivery systems for cancer therapy. Biomaterials. 2017;112:234–47.

    PubMed  CAS  Google Scholar 

  101. Ma P, Mumper RJ. Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol. 2013;4(2):1000164.

    PubMed  PubMed Central  Google Scholar 

  102. Bi S, Dong Y, Jia X, Chen M, Zhong H, Ji B. Self-assembled multifunctional DNA nanospheres for biosensing and drug delivery into specific target cells. Nanoscale. 2015;7(16):7361–7.

    PubMed  CAS  Google Scholar 

  103. Zhang Y, Hou Z, Ge Y, Deng K, Liu B, Li X, Li Q, Cheng Z, Ma P, Li C, Lin J. DNA-hybrid-gated photothermal mesoporous silica nanoparticles for NIR-responsive and aptamer-targeted drug delivery. ACS Appl Mater Interfaces. 2015;7(37):20696–706.

    PubMed  CAS  Google Scholar 

  104. Wang Z, Huang P, Jacobson O, Wang Z, Liu Y, Lin L, Lin J, Lu N, Zhang H, Tian R, Niu G, Liu G, Chen X. Biomineralization-inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics. ACS Nano. 2016;10(3):3453–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  105. Lin J, Wang M, Hu H, Yang X, Wen B, Wang Z, Jacobson O, Song J, Zhang G, Niu G, Huang P, Chen X. Multimodal-imaging-guided cancer phototherapy by versatile biomimetic theranostics with UV and gamma-irradiation protection. Adv Mater. 2016;28(17):3273–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  106. Yang W, Guo W, Le W, Lv G, Zhang F, Shi L, Wang X, Wang J, Wang S, Chang J, Zhang B. Albumin-bioinspired Gd: CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted photothermal therapy. ACS Nano. 2016;10(11):10245–57.

    PubMed  CAS  Google Scholar 

  107. Oberli MA, Reichmuth AM, Dorkin JR, Mitchell MJ, Fenton OS, Jaklenec A, Anderson DG, Langer R, Blankschtein D. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 2017;17(3):1326–35.

    PubMed  CAS  Google Scholar 

  108. Zhang Y, Leonard M, Shu Y, Yang Y, Shu D, Guo P, Zhang X. Overcoming tamoxifen resistance of human breast cancer by targeted gene silencing using multifunctional pRNA nanoparticles. ACS Nano. 2017;11(1):335–46.

    PubMed  CAS  Google Scholar 

  109. Li Y, Yue S, Qi H, Ding C, Song W, Bi S. Target-triggered dynamic hairpin assembly for signal amplification of microRNA and oncogenes and its application in live-cell imaging. Chem Commun. 2019;55(28):4103–6.

    CAS  Google Scholar 

  110. Li WP, Liao PY, Su CH, Yeh CS. Formation of oligonucleotide-gated silica shell-coated Fe3O4-Au core-shell nanotrisoctahedra for magnetically targeted and near-infrared light-responsive theranostic platform. J Am Chem Soc. 2014;136(28):10062–75.

    PubMed  CAS  Google Scholar 

  111. Fan W, Huang P, Chen X. Overcoming the Achilles’ heel of photodynamic therapy. Chem Soc Rev. 2016;45(23):6488–519.

    PubMed  CAS  Google Scholar 

  112. Kang Z, Yan X, Zhao L, Liao Q, Zhao K, Du H, Zhang X, Zhang X, Zhang Y. Gold nanoparticle/ZnO nanorod hybrids for enhanced reactive oxygen species generation and photodynamic therapy. Nano Res. 2015;8(6):2004–14.

    CAS  Google Scholar 

  113. Lv R, Yang P, He F, Gai S, Li C, Dai Y, Yang G, Lin J. A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light. ACS Nano. 2015;9(2):1630–47.

    PubMed  CAS  Google Scholar 

  114. Zhou Z, Wang Y, Yan Y, Zhang Q, Cheng Y. Dendrimer-templated ultrasmall and multifunctional photothermal agents for efficient tumor ablation. ACS Nano. 2016;10(4):4863–72.

    PubMed  CAS  Google Scholar 

  115. Wang Y, Jiang LP, Zhou S, Bi S, Zhu JJ. DNA polymerase-directed hairpin assembly for targeted drug delivery and amplified biosensing. Acs Appl Mater Interfaces. 2016;8(40):26532–40.

    PubMed  CAS  Google Scholar 

  116. Bi S, Yue S, Song W, Zhang S. A target-initiated DNA network caged on magnetic particles for amplified chemiluminescence resonance energy transfer imaging of microRNA and targeted drug delivery. Chem Commun. 2016;52(87):12841–4.

    CAS  Google Scholar 

  117. Wu C, Han D, Chen T, Peng L, Zhu G, You M, Qiu L, Sefah K, Zhang X, Tan W. Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy. J Am Chem Soc. 2013;135:18644–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Bi S, Chen M, Jia X, Dong Y. A hot-spot-active magnetic graphene oxide substrate for microRNA detection based on cascaded chemiluminescence resonance energy transfer. Nanoscale. 2015;7(8):3745–53.

    PubMed  CAS  Google Scholar 

  119. Song L, Jiang Q, Liu J, Li N, Liu Q, Dai L, Gao Y, Liu W, Liu D, Ding B. DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance. Nanoscale. 2017;9(23):7750–4.

    PubMed  CAS  Google Scholar 

  120. Yao Y, Zhao D, Li N, Shen F, Machuki JO, Yang D, Li J, Tang D, Yu Y, Tian J, Dong H, Gao F. Multifunctional Fe3O4@polydopamine@DNA-fueled molecular machine for magnetically targeted intracellular Zn2+ imaging and fluorescence/MRI guided photodynamic-photothermal therapy. Anal Chem. 2019;91(12):7850–7.

    PubMed  CAS  Google Scholar 

  121. Liu Y, Li Z, Yin Z, Zhang H, Gao Y, Huo G, Wu A, Zeng L. Amplified photoacoustic signal and enhanced photothermal conversion of polydopamine-coated gold nanobipyramids for phototheranostics and synergistic chemotherapy. ACS Appl Mater Interfaces. 2020;12(13):14866–75.

    PubMed  CAS  Google Scholar 

  122. Song J, Hwang S, Im K, Hur J, Nam J, Hwang S, Ahn G-O, Kim S, Park N. Light-responsible DNA hydrogel-gold nanoparticle assembly for synergistic cancer therapy. J Mater Chem B. 2015;3(8):1537–43.

    PubMed  CAS  Google Scholar 

  123. Song J, Im K, Hwang S, Hur J, Nam J, Ahn G-O, Hwang S, Kim S, Park N. DNA hydrogel delivery vehicle for light-triggered and synergistic cancer therapy. Nanoscale. 2015;7(21):9433–7.

    PubMed  CAS  Google Scholar 

  124. Kalluru P, Vankayala R, Chiang CS, Hwang KC. Unprecedented “all-in-one” lanthanide-doped mesoporous silica frameworks for fluorescence/MR imaging and combination of NIR light triggered chemo-photodynamic therapy of tumors. Adv Funct Mater. 2016;26(43):7908–20.

    CAS  Google Scholar 

  125. Wan H, Zhang Y, Zhang W, Zou H. Robust two-photon visualized nanocarrier with dual targeting ability for controlled chemo-photodynamic synergistic treatment of cancer. ACS Appl Mater Interfaces. 2015;7(18):9608–18.

    PubMed  CAS  Google Scholar 

  126. Jin X, Zeng Q, Zheng J, Xing D, Zhang T. Aptamer-functionalized upconverting nanoformulations for light-switching cancer-specific recognition and in situ photodynamic-chemo sequential theranostics. ACS Appl Mater Interfaces. 2021;13:9316–28.

    PubMed  CAS  Google Scholar 

  127. Wang H, Agarwal P, Zhao S, Yu J, Lu X, He X. Combined cancer therapy with hyaluronan-decorated fullerene-silica multifunctional nanoparticles to target cancer stem-like cells. Biomaterials. 2016;97:62–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  128. Li Q, Sun L, Hou M, Chen Q, Yang R, Zhang L, Xu Z, Kang Y, Xue P. Phase-change material packaged within hollow copper sulfide nanoparticles carrying doxorubicin and chlorin e6 for fluorescence-guided trimodal therapy of cancer. ACS Appl Mater Interfaces. 2019;11(1):417–29.

    PubMed  CAS  Google Scholar 

  129. Yu K, Hai X, Yue S, Song W, Bi S. Glutathione-activated DNA-Au nanomachine as targeted drug delivery platform for imaging-guided combinational cancer therapy. Chem Eng J. 2021;419:129535.

    CAS  Google Scholar 

  130. Yi Y, Wang H, Wang X, Liu Q, Ye M, Tan W. A smart, photocontrollable drug release nanosystem for multifunctional synergistic cancer therapy. ACS Appl Mater Interfaces. 2017;9(7):5847–54.

    PubMed  CAS  Google Scholar 

  131. He X, Zhao Y, He D, Wang K, Xu F, Tang J. ATP-responsive controlled release system using aptamer-functionalized mesoporous silica nanoparticles. Langmuir. 2012;28:12909–15.

    PubMed  CAS  Google Scholar 

  132. Idili A, Vallee-Belisle A, Ricci F. Programmable pH-triggered DNA nanoswitches. J Am Chem Soc. 2014;136(16):5836–9.

    PubMed  CAS  Google Scholar 

  133. Park H, Kim J, Jung S, Kim WJ. DNA-Au nanomachine equipped with i-motif and G-quadruplex for triple combinatorial anti-tumor therapy. Adv Funct Mater. 2018;28(5):1705416.

    Google Scholar 

  134. Yang B, Dong X, Lei Q, Zhuo R, Feng J, Zhang X. Host-guest interaction-based self-engineering of nano-sized vesicles for co-delivery of genes and anticancer drugs. ACS Appl Mater Interfaces. 2015;7(39):22084–94.

    PubMed  CAS  Google Scholar 

  135. Han L, Tang C, Yin C. Dual-targeting and pH/redox-responsive multi-layered nanocomplexes for smart co-delivery of doxorubicin and siRNA. Biomaterials. 2015;60:42–52.

    PubMed  CAS  Google Scholar 

  136. Lee J, Choi K-J, Moon SU, Kim S. Theragnosis-based combined cancer therapy using doxorubicin-conjugated microRNA-221 molecular beacon. Biomaterials. 2016;74:109–18.

    PubMed  CAS  Google Scholar 

  137. Li Y, Yue S, Cao J, Zhu C, Wang Y, Hai X, Song W, Bi S. pH-responsive DNA nanomicelles for chemo-gene synergetic therapy of anaplastic large cell lymphoma. Theranostics. 2020;10(18):8250–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  138. Yu S, Wang Y, Li Y, Jiang LP, Bi S, Zhu J-J. Multifunctional DNA polycatenane nanocarriers for synergistic targeted therapy of multidrug-resistant human leukemia. Adv Funct Mater. 2019;29(48):1905659.

    CAS  Google Scholar 

  139. Zhao Y, Zhang C-L, Zeng BF, Wu X-S, Gao TT, Oda Y. Enhanced chemosensitivity of drug-resistant osteosarcoma cells by lentivirus-mediated Bcl-2 silencing. Biochem Biophys Res Commun. 2009;390(3):642–7.

    PubMed  CAS  Google Scholar 

  140. Rajendrakumar SK, Venu A, Revuri V, George Thomas R, Thirunavukkarasu GK, Zhang J, Vijayan V, Choi SY, Lee JY, Lee Y-K, Jeong YY, Park I-K. Hyaluronan-stabilized redox-sensitive nanoassembly for chemo-gene therapy and dual T1/T2 MR imaging in drug-resistant breast cancer cells. Mol Pharmaceutics. 2019;16(5):2226–34.

    CAS  Google Scholar 

  141. Mou Q, Ma Y, Ding F, Gao X, Yan D, Zhu X, Zhang C. Two-in-one chemogene assembled from drug-integrated antisense oligonucleotides to reverse chemoresistance. J Am Chem Soc. 2019;141(17):6955–66.

    PubMed  CAS  Google Scholar 

  142. Duffy MJ, Synnott NC, McGowan PM, Crown J, O’Connor D, Gallagher WM. p53 as a target for the treatment of cancer. Cancer Treat Rev. 2014;40(10):1153–60.

    PubMed  CAS  Google Scholar 

  143. Liu J, Song L, Liu S, Jiang Q, Liu Q, Li N, Wang Z-G, Ding B. A DNA-based nanocarrier for efficient gene delivery and combined cancer therapy. Nano Lett. 2018;18(6):3328–34.

    PubMed  CAS  Google Scholar 

  144. Yue S, Qiao Z, Yu K, Hai X, Li Y, Li Y, Song W, Bi S. DNA addition polymerization with logic operation for controllable self-assembly of three-dimensional nanovehicles and combinatorial cancer therapy. Chem Eng J. 2021;408:127258.

    CAS  Google Scholar 

  145. Lu K, He C, Lin W. A chlorin-based nanoscale metal-organic framework for photodynamic therapy of colon cancers. J Am Chem Soc. 2015;137(24):7600–3.

    PubMed  PubMed Central  CAS  Google Scholar 

  146. Yan X, Niu G, Lin J, Jin AJ, Hu H, Tang Y, Zhang Y, Wu A, Lu J, Zhang S, Huang P, Shen B, Chen X. Enhanced fluorescence imaging guided photodynamic therapy of sinoporphyrin sodium loaded graphene oxide. Biomaterials. 2015;42:94–102.

    PubMed  CAS  Google Scholar 

  147. Yang Y, Aw J, Xing B. Nanostructures for NIR light-controlled therapies. Nanoscale. 2017;9(11):3698–718.

    PubMed  CAS  Google Scholar 

  148. Cao H, Wang L, Yang Y, Li J, Qi Y, Li Y, Li Y, Wang H, Li J. An assembled nanocomplex for improving both therapeutic efficiency and treatment depth in photodynamic therapy. Angew Chem Int Ed. 2018;57(26):7759–63.

    CAS  Google Scholar 

  149. Guo H, Wang Y, Song T, Xin T, Zheng Z, Zhong P, Zhang X. Silencing of survivin using YM155 inhibits invasion and suppresses proliferation in glioma cells. Cell Biochem Biophys. 2015;71(2):587–93.

    PubMed  CAS  Google Scholar 

  150. Ferrario A, Rucker N, Wong S, Ltma M, Gomer CJ. Survivin, a member of the inhibitor of apoptosis family, is induced by photodynamic therapy and is a target for improving treatment response. Cancer Res. 2007;67(10):4989–95.

    PubMed  CAS  Google Scholar 

  151. Jin Y, Wang H, Li X, Zhu H, Sun D, Sun X, Liu H, Zhang Z, Cao L, Gao C, Wang H, Liang XJ, Zhang J, Yang X. Multifunctional DNA polymer-assisted upconversion therapeutic nanoplatform for enhanced photodynamic therapy. ACS Appl Mater Interfaces. 2020;12(24):26832–41.

    PubMed  CAS  Google Scholar 

  152. Chen ZH, Kim HP, Sciurba FC, Lee SJ, Feghali-Bostwick C, Stolz DB, Dhir R, Landreneau RJ, Schuchert MJ, Yousem SA, Nakahira K, Pilewski JM, Lee JS, Zhang Y, Ryter SW, Choi AMK. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS ONE. 2008;3(10):e3316.

    PubMed  PubMed Central  Google Scholar 

  153. Wang H, Chen Y, Wang H, Liu X, Zhou X, Wang F. DNAzyme-loaded metal-organic frameworks (MOFs) for self-sufficient gene therapy. Angew Chem Int Ed. 2019;58(22):7380–4.

    CAS  Google Scholar 

  154. Yu J, Javier D, Yaseen MA, Nitin N, Richards-Kortum R, Anvari B, Wong MS. Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules. J Am Chem Soc. 2010;132(6):1929–38.

    PubMed  PubMed Central  CAS  Google Scholar 

  155. Ye W, Li H, Li X, Fan X, Jin Q, Ji J. mRNA guided intracellular self-assembly of DNA-gold nanoparticle conjugates as a precise trigger to up-regulate cell apoptosis and activate photothermal therapy. Bioconjug Chem. 2019;30(6):1763–72.

    PubMed  CAS  Google Scholar 

  156. Feng J, Xu Z, Liu F, Zhao Y, Yu W, Pan M, Wang F, Liu X. Versatile catalytic deoxyribozyme vehicles for multimodal imaging-guided efficient gene regulation and photothermal therapy. ACS Nano. 2018;12(12):12888–901.

    PubMed  CAS  Google Scholar 

  157. Yang Z, Hou B, Yang Y, Jiang L, Xie A, Shen Y, Zhu M. A pH-induced charge convertible nanocomposite as novel targeted phototherapy agent and gene carrier. Chem Eng J. 2018;353:350–60.

    CAS  Google Scholar 

  158. Wang J, Zhu G, You M, Song E, Shukoor MI, Zhang K, Altman MB, Chen Y, Zhu Z, Huang CZ, Tan W. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano. 2012;6(6):5070–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  159. Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev. 2015;115(19):11109–46.

    PubMed  PubMed Central  CAS  Google Scholar 

  160. Noh Y, Kim S, Kim J, Kim S, Ryu J, Kim I, Lee E, Um SH, Lim YT. Multifaceted immunomodulatory nanoliposomes: reshaping tumors into vaccines for enhanced cancer immunotherapy. Adv Funct Mater. 2017;27(8):1605398.

    Google Scholar 

  161. Fontana F, Shahbazi MA, Liu D, Zhang H, Makila E, Salonen J, Hirvonen JT, Santos HA. Multistaged nanovaccines based on porous silicon@acetalated dextran@cancer cell membrane for cancer immunotherapy. Adv Mater. 2017;29(7):1603239.

    Google Scholar 

  162. Zhu G, Zhang F, Ni Q, Niu G, Chen X. Efficient nanovaccine delivery in cancer immunotherapy. ACS Nano. 2017;11(3):2387–92.

    PubMed  CAS  Google Scholar 

  163. Musetti S, Huang L. Nanoparticle-mediated remodeling of the tumor microenvironment to enhance immunotherapy. ACS Nano. 2018;12(12):11740–55.

    PubMed  CAS  Google Scholar 

  164. Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A, Moon JJ. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater. 2017;16(4):489–96.

    PubMed  CAS  Google Scholar 

  165. Da Silva CG, Rueda F, Lowik CW, Ossendorp F, Cruz LJ. Combinatorial prospects of nano-targeted chemoimmunotherapy. Biomaterials. 2016;83:308–20.

    PubMed  Google Scholar 

  166. Gargett T, Christo SN, Hercus TR, Abbas N, Singhal N, Lopez AF, Brown MP. GM-CSF signalling blockade and chemotherapeutic agents act in concert to inhibit the function of myeloid-derived suppressor cells in vitro. Clin Transl Immunology. 2016;5(12):e119.

    PubMed  PubMed Central  Google Scholar 

  167. Kim J, Manspeaker MP, Thomas SN. Augmenting the synergies of chemotherapy and immunotherapy through drug delivery. Acta Biomater. 2019;88:1–14.

    PubMed  CAS  Google Scholar 

  168. Yata T, Takahashi Y, Tan M, Nakatsuji H, Ohtsuki S, Murakami T, Imahori H, Umeki Y, Shiomi T, Takakura Y, Nishikawa M. DNA nanotechnology-based composite-type gold nanoparticle-immunostimulatory DNA hydrogel for tumor photothermal immunotherapy. Biomaterials. 2017;146:136–45.

    PubMed  CAS  Google Scholar 

  169. Zhang P, Wang C, Zhao J, Xiao A, Shen Q, Li L, Li J, Zhang J, Min Q, Chen J, Chen HY, Zhu JJ. Near infrared-guided smart nanocarriers for microRNA-controlled release of doxorubicin/siRNA with intracellular ATP as fuel. ACS Nano. 2016;10(3):3637–47.

    PubMed  CAS  Google Scholar 

  170. Qi H, Yue S, Bi S, Ding C, Song W. DNA logic assembly powered by a triplex-helix molecular switch for extracellular pH imaging. Chem Commun. 2018;54(61):8498–501.

    CAS  Google Scholar 

  171. Pieve CD, Blackshaw E, Missailidis S, Perkins AC. PEGylation and biodistribution of an anti-MUC1 aptamer in MCF-7 tumor-bearing mice. Bioconjugate Chem. 2012;23(7):1377–81.

    Google Scholar 

  172. Dollins CM, Nair S, Boczkowski D, Lee J, Layzer JM, Gilboa E, Sullenger BA. Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer. Cell Chem Bio. 2008;15(7):675–82.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the support from the National Natural Science Foundation of China (22076087), the Special Funds of Taishan Scholar Program of Shandong Province (tsqn20161028), the National Science Outstanding Youth Fund of Shandong Province (ZR2020JQ08), the Youth Innovation Technology Program of Shandong Province (2019KJC029), the Collaborative Innovation Program of Jinan (2018GXRC033), and the Open Project of Chemistry Department of Qingdao University of Science and Technology (QUSTHX201928).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai Bi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, KX., Qiao, ZJ., Song, WL. et al. DNA Nanotechnology for Multimodal Synergistic Theranostics. J. Anal. Test. 5, 112–129 (2021). https://doi.org/10.1007/s41664-021-00182-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-021-00182-z

Keywords

Navigation