Skip to main content
Log in

Use of Eucalyptus camaldulensis as Biosorbent for Lead Removal from Aqueous Solution

  • Research paper
  • Published:
International Journal of Environmental Research Aims and scope Submit manuscript

Abstract

The removal of lead ions from aqueous solution by the biosorbent Eucalyptus camaldulensis leaf powder (ECLP) was investigated. The ECLP with and without nitric acid conditioning was characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transformation infrared spectroscopy (FTIR). The FTIR spectra for the sorbents tested in this work revealed lead complexation to functional groups. The effects of biosorbent dosage, contact time, salinity, pH, and temperature on the removal efficiency of lead ion by ECLP were evaluated. The optimal parameters were determined to be 2 g/L of biosorbent dosage, pH 7.0, salinity 500 ppm and equilibrium time of 40 min in case of conditioned ECLP (ECPL-N). The adsorption isotherms of lead ions on ECPL-N was best described by the Freundlich isotherm with Freundlich constants of Af= 23.8 and n = 1.84 at 25 °C. The kinetics of lead ions adsorption on ECPL-N was found to follow pseudo-second-order reaction kinetics with rate constant of 0.02 g/mg.min at 25 °C. It is found that at optimal conditions, ECLP-N was able to reduce lead concentration below 0.1 ppm. The fixed bed column adsorption of lead using ECLP-N was best described by the Yan model. These findings strongly suggest that ECPL-N can be implemented as an efficient alternative to other adsorbents for lead removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abdel-Aty AM, Ammar NS, Abdel Ghafar HH, Ali RK (2013) Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass. J Adv Res 4(4):367–374

    Article  CAS  Google Scholar 

  • Abdelfattah I, Ismail AA, Sayed FA, Almedolab A, Aboelghait KM (2016) Biosorption of heavy metals ions in real industrial wastewater using peanut husk as efficient and cost effective adsorbent. Env. Nanotech. Mon Manag 6:176–183

    Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  Google Scholar 

  • Apiratikul R, Pavasant P (2008) Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresour Technol 99(8):2766–2777

    Article  CAS  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    Article  CAS  Google Scholar 

  • Bernardo M, Mendes S, Lapa N, Gonçalves M, Mendes B, Pinto F (2013) Removal of lead (Pb2+) from aqueous medium by using chars from co-pyrolysis. J Colloid Interface Sci 409:158–165

    Article  CAS  Google Scholar 

  • Blázquez G, Calero M, Ronda A, Tenorio G, Martín-Lara M (2014) Study of kinetics in the biosorption of lead onto native and chemically treated olive stone. J Ind Eng Chem 20(5):2754–2760

    Article  Google Scholar 

  • Boonamnuayvitaya V, Chaiya C, Tanthapanichakoon W, Jarudilokkul S (2004) Removal of heavy metals by adsorbent prepared from pyrolyzed coffee residues and clay. Sep Purif Technol 35(1):11–22

    Article  CAS  Google Scholar 

  • Boudrahem F, Aissani-Benissad F, Soualah A (2011) Adsorption of lead(II) from aqueous solution by using leaves of date trees as an adsorbent. J Chem Eng Data 56(5):1804–1812

    Article  CAS  Google Scholar 

  • Choi SB, Yun Y-S (2006) Biosorption of cadmium by various types of dried sludge: an equilibrium study and investigation of mechanisms. J Hazard Mater 138(2):378–383

    Article  CAS  Google Scholar 

  • Chu KH (2010) Fixed bed sorption: setting the record straight on the Bohart–Adams and Thomas models. J Hazard Mater 177(1–3):1006–1012

    Article  CAS  Google Scholar 

  • Conrad K, Bruun Hansen HC (2007) Sorption of zinc and lead on coir. Biores Technol 98(1):89–97

    Article  CAS  Google Scholar 

  • Dragan S, Fitch A (1998) Infrared spectroscopy determination of lead binding to ethylendiaminetetraacetic acid. J Chem Educ 75(8):1018–1021

    Article  CAS  Google Scholar 

  • El-Wakil A, Awad F (2014) Removal of lead from aqueous solution on activated carbon and modified activated carbon prepared from dried water hyacinth plant. J Anal Bioanal Tech 5(2):1–14

    Google Scholar 

  • Esposito A, Pagnanelli F, Vegliò F (2002) pH-related equilibria models for biosorption in single metal systems. Chem Eng Sci 57(3):307–313

    Article  CAS  Google Scholar 

  • Eucalyptus camaldulensis Dehnh (2004) From http://www.anbg.gov.au/cpbr/WfHC/Eucalyptus-camaldulensis/. Retrieved on 28 April 2018

  • Febrianto J, Kosasih AN, Sunarso J, Ju Y-H, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162(2–3):616–645

    Article  CAS  Google Scholar 

  • Feng Q, Lin Q, Gong F, Sugita S, Shoya M (2004) Adsorption of lead and mercury by rice husk ash. J Colloid Interface Sci 278(1):1–8

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418

    Article  CAS  Google Scholar 

  • Guyo U, Sibanda K, Sebata E, Chigondo F, Moyo M (2016) Removal of nickel(II) from aqueous solution by Vigna unguiculata (Cowpea) pods biomass. Water Sci Technol. https://doi.org/10.2166/wst.2016.012

    Article  Google Scholar 

  • Hanbali M, Holail H, Hammud H (2014) Remediation of lead by pretreated red algae: adsorption isotherm, kinetic, column modeling and simulation studies. Green Chem Lett Rev 7(4):342–358

    Article  Google Scholar 

  • Hanif MA, Nadeem R, Bhatti HN, Ahmad NR, Ansari TM (2007) Ni(II) biosorption by Cassia fistula (Golden Shower) biomass. J Hazard Mater 139(2):345–355

    Article  CAS  Google Scholar 

  • Inyang M, Gao B, Ding W, Pullammanappallil P, Zimmerman AR, Cao X (2011) Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse. Sep Sci Technol 46(12):1950–1956

    Article  CAS  Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  Google Scholar 

  • Kausar A, Bhatti HN, MacKinnon G (2013) Equilibrium, kinetic and thermodynamic studies on the removal of U(VI) by low cost agricultural waste. Colloids Surf, B 111:124–133

    Article  CAS  Google Scholar 

  • Kobya M, Demirbas E, Senturk E, Ince M (2005) Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour Technol 96(13):1518–1521

    Article  CAS  Google Scholar 

  • Lee LY, Lee XJ, Chia PC, Tan KW, Gan S (2014) Utilisation of Cymbopogon citratus (lemon grass) as biosorbent for the sequestration of nickel ions from aqueous solution: equilibrium, kinetic, thermodynamics and mechanism studies. J Taiwan Inst Chem Eng 45(4):1764–1772

    Article  CAS  Google Scholar 

  • Lesmana SO, Febriana N, Soetaredjo FE, Sunarso J, Ismadji S (2009) Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem Eng J 44(1):19–41

    Article  CAS  Google Scholar 

  • Lu H, Zhang W, Yang Y, Huang X, Wang S, Qiu R (2012) Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res 46(3):854–862

    Article  CAS  Google Scholar 

  • Lutts S, Qin P, Han R-M (2016) Salinity influences biosorption of heavy metals by the roots of the halophyte plant species Kosteletzkya pentacarpos. Ecol Eng 95:682–689

    Article  Google Scholar 

  • Machida M, Yamazaki R, Aikawa M, Tatsumoto H (2005) Role of minerals in carbonaceous adsorbents for removal of Pb(II) ions from aqueous solution. Sep Purif Technol 46(1–2):88–94

    Article  CAS  Google Scholar 

  • Martínez M, Miralles N, Hidalgo S, Fiol N, Villaescusa I, Poch J (2006) Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste. J Hazard Mater 133(1):203–211

    Article  Google Scholar 

  • Martín-Lara MA, Blázquez G, Ronda A, Rodríguez IL, Calero M (2012) Multiple biosorption–desorption cycles in a fixed-bed column for Pb(II) removal by acid-treated olive stone. J Ind Eng Chem 18(3):1006–1012

    Article  Google Scholar 

  • Miretzky P, Muñoz C, Carrillo-Chávez A (2008) Experimental binding of lead to a low cost on biosorbent: nopal (Opuntia streptacantha). Biores Technol 99(5):1211–1217

    Article  CAS  Google Scholar 

  • Mitra T, Singha B, Bar N, Das SK (2014) Removal of Pb(II) ions from aqueous solution using water hyacinth root by fixed-bed column and ANN modeling. J Hazard Mater 273:94–103

    Article  CAS  Google Scholar 

  • Mohan S, Sreelakshmi G (2008) Fixed bed column study for heavy metal removal using phosphate treated rice husk. J Hazard Mater 153(1–2):75–82

    Article  CAS  Google Scholar 

  • Mohan D, Sarswat A, Ok YS, Pittman CU Jr (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Biores Technol 160:191–202

    Article  CAS  Google Scholar 

  • Momčilović M, Purenović M, Bojić A, Zarubica A, Ranđelović M (2011) Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 276(1–3):53–59

    Article  Google Scholar 

  • Mudipalli A (2007) Lead hepatotoxicity and potential health effects. Indian J Med Res 126(6):518–527

    CAS  Google Scholar 

  • Nguyen TAH, Ngo HH, Guo WS, Zhang J, Liang S, Yue QY (2013) Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Biores Technol 148:574–585

    Article  CAS  Google Scholar 

  • Pagnanelli F, Mainelli S, Vegliò F, Toro L (2003) Heavy metal removal by olive pomace: biosorbent characterisation and equilibrium modelling. Chem Eng Sci 58(20):4709–4717

    Article  CAS  Google Scholar 

  • Pahlavanzadeh H, Keshtkar AR, Safdari J, Abadi Z (2010) Biosorption of nickel(II) from aqueous solution by brown algae: equilibrium, dynamic and thermodynamic studies. J Hazard Mater 175(1–3):304–310

    Article  CAS  Google Scholar 

  • Persson I, Lyczko K, Lundberg D, Eriksson L, Płaczek A (2011) Coordination chemistry study of hydrated and solvated lead(II) ions in solution and solid state. Inorg Chem 50(3):1058–1072

    Article  CAS  Google Scholar 

  • Prasad MNV, Freitas H (2000) Removal of toxic metals from solution by leaf, stem and root phytomass of Quercus ilex L. (holly oak). Environ Pollut 110(2):277–283

    Article  CAS  Google Scholar 

  • Quek S, Wase D, Forster C (1998) The use of sago waste for the sorption of lead and copper. Water SA 24(3):251–256

    CAS  Google Scholar 

  • Rafiq M, Farooq U, Athar M, Salman M, Aslam M, Raza HMH (2016) Gardenia jasminoides: an ornamental plant for the biosorption of lead and cadmium ions. Desalination Water Treat 57(22):10432–10442

    Article  CAS  Google Scholar 

  • Reddy DHK, Seshaiah K, Reddy AVR, Rao MM, Wang MC (2010) Biosorption of Pb2+ from aqueous solutions by Moringa oleifera bark: equilibrium and kinetic studies. J Hazard Mater 174(1):831–838

    Article  CAS  Google Scholar 

  • Senthil KP, Ramalingam S, Abhinaya RV, Kirupha SD, Murugesan A, Sivanesan S (2012) Adsorption of metal ions onto the chemically modified agricultural waste. Clean—Soil, Air, Water 40(2):188–197

    Article  Google Scholar 

  • Sugashini S, Sheriffa Begum KMM (2013) Column adsorption studies for the removal of Cr(VI) ions by ethylamine modified chitosan carbonized rice husk composite beads with modelling and optimization. J Chem 2013:1–11

    Article  Google Scholar 

  • Sulaymon AH, Mohammed TJ, Al-Najar J (2012) Equilibrium and kinetics studies of adsorption of heavy metals onto activated carbon. Can J Chem Eng Technol 3(4):86–92

    Google Scholar 

  • Suryan S, Ahluwalia SS (2012) Biosorption of heavy metals by paper mill waste from aqueous solution. Agris On-line Pap Econ Inform 2(3):1331–1343

    CAS  Google Scholar 

  • Tabaraki R, Nateghi A, Ahmady-Asbchin S (2014) Biosorption of lead (II) ions on Sargassum ilicifolium: application of response surface methodology. Int Biodeterior Biodegrad 93:145–152

    Article  CAS  Google Scholar 

  • Taşar Ş, Kaya F, Özer A (2014) Biosorption of lead(II) ions from aqueous solution by peanut shells: equilibrium, thermodynamic and kinetic studies. J Environ Chem Eng 2(2):1018–1026

    Article  Google Scholar 

  • Tchobanoglous G, Burton FL, Stensel HD, Metcalf E (2003) Wastewater engineering: treatment and reuse. McGraw-Hill Education, Maidenheach

    Google Scholar 

  • Trakal L, Bingöl D, Pohořelý M, Hruška M, Komárek M (2014) Geochemical and spectroscopic investigations of Cd and Pb sorption mechanisms on contrasting biochars: engineering implications. Biores Technol 171:442–451

    Article  CAS  Google Scholar 

  • Tunali Akar S, Arslan S, Alp T, Arslan D, Akar T (2012) Biosorption potential of the waste biomaterial obtained from Cucumis melo for the removal of Pb2+ ions from aqueous media: equilibrium, kinetic, thermodynamic and mechanism analysis. Chem Eng J 185–186:82–90

    Article  Google Scholar 

  • USEPA (2016) Table of regulated drinking water contaminants

  • Velazquez-Jimenez LH, Pavlick A, Rangel-Mendez JR (2013) Chemical characterization of raw and treated agave bagasse and its potential as adsorbent of metal cations from water. Ind Crops Prod 43:200–206

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24(5):427–451

    Article  CAS  Google Scholar 

  • Waseem S, Din MI, Nasir S, Rasool A (2014) Evaluation of Acacia nilotica as a non conventional low cost biosorbent for the elimination of Pb(II) and Cd(II) ions from aqueous solutions. Arabian J Chem 7(6):1091–1098

    Article  CAS  Google Scholar 

  • Wilson K, Yang H, Seo CW, Marshall WE (2006) Select metal adsorption by activated carbon made from peanut shells. Biores Technol 97(18):2266–2270

    Article  CAS  Google Scholar 

  • Witek-Krowiak A, Szafran RG, Modelski S (2011) Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination 265(1–3):126–134

    Article  CAS  Google Scholar 

  • Xu X, Cao X, Zhao L (2013a) Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars. Chemosphere 92(8):955–961

    Article  CAS  Google Scholar 

  • Xu X, Cao X, Zhao L, Wang H, Yu H, Gao B (2013b) Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ Sci Pollut Res Int 20(1):358–368

    Article  CAS  Google Scholar 

  • Zulfadhly Z, Mashitah MD, Bhatia S (2001) Heavy metals removal in fixed-bed column by the macro fungus Pycnoporus sanguineus. Environ Pollut 112(3):463–470

    Article  CAS  Google Scholar 

  • Zulkali MMD, Ahmad AL, Norulakmal NH (2006) Oryza sativa L. husk as heavy metal adsorbent: optimization with lead as model solution. Biores Technol 97(1):21–25

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taleb Hassan Ibrahim.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabri, M.A., Ibrahim, T.H., Khamis, M.I. et al. Use of Eucalyptus camaldulensis as Biosorbent for Lead Removal from Aqueous Solution. Int J Environ Res 12, 513–529 (2018). https://doi.org/10.1007/s41742-018-0112-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41742-018-0112-0

Keywords

Navigation