Skip to main content
Log in

Preparation and characterization of electrospun polylactic acid/sodium alginate/orange oyster shell composite nanofiber for biomedical application

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Bone tissue engineering has begun to draw attention in recent years. The interactive combination of biomaterials and cells is part of bone tissue engineering. Sodium alginate (SA) is a biologically compatible, degradable, non-toxic natural polymer accepted by the human body and is widely used in the field of tissue engineering. Polylactic acid (PLA) is another type of biodegradable thermoplastic polyester derived from renewable sources which are used in bone tissue engineering and biomedical owing to its biocompatibility and biodegradability. Hydroxyapatite (HA) and tricalcium phosphate (TCP) derived from natural sources such as marine species and bovine bone are biocompatible and non-toxic biomaterials which are used to reconstruct many parts of the skeleton. In this study, PLA, SA with different compositions, and nanofibers obtained by adding orange spiny oyster shell powders (Spondylus barbatus) to them by using electrospining technique. Cell culture study, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and physical analysis such as density, electrical conductivity, surface tension, viscosity measurement, and tensile strength measurement tests were carried out after the production process. Produced nanofibers showed smooth and beadless surface. The average diameters and distributions decreased with the addition of optimum PLA and TCP amount. The tensile strength of nanofibers was enhanced with the additional SA and TCP. The produced nanofibers are compatible with human bone tissue, which are not cytotoxic, and in addition, a high cell efficiency of SaOS-2 cells on the nanofibers was observed with SEM images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Balagangadharan, K., Dhivya, S., Selvamurugan, N.: Chitosan based nanofibers in bone tissue engineering. Int. J. Biol. Macromol. 104, 1372–1382 (2017)

    CAS  Google Scholar 

  2. Ferrone, M.L., Raut, C.P.: Modern surgical therapy: limb salvage and the role of amputation for extremity soft-tissue sarcomas. Surg. Oncol. Clin. N. Am. 21, 201–213 (2012)

    Google Scholar 

  3. Santoro, M., Shah, S.R., Walker, J.L., Mikos, A.G.: Poly (lactic acid) nano fibrous scaffolds for tissue engineering. Adv.Drug Deliv. Rev. 107, 206–212 (2016)

    CAS  Google Scholar 

  4. Liu, X., Holzwarth, J.M., Ma, P.X.: Functionalized synthetic biodegradable polymer scaffolds for tissue engineering. Macromol. Biosci. 12, 911–919 (2012)

    CAS  Google Scholar 

  5. Martinez, E., Engel, E., Planell, J.A., Samitier, J.: Effects of artificial micro- and nano-structured surfaces on cell behaviour. Ann. Anat. 191, 126–135 (2009)

    CAS  Google Scholar 

  6. Shelke, N., James, R., Laurencin, C., Kumbar, S.: Polysaccharide biomaterials for drug delivery and regenerative engineering. Polym. Adv. Technol. 25(5), 448–460 (2014)

    CAS  Google Scholar 

  7. Yang, J.M., Wang, N.C., Chiu, H.C.: Preparation and characterization of poly (vinyl alcohol)/sodium alginate blended membrane for alkaline solidpolymer electrolytes membrane. J. Membr. Sci. 457, 139–148 (2014)

    CAS  Google Scholar 

  8. Zhang, Y., Liu, J., Huang, L., Wang, Z., Wang, L.: Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery. Sci. Rep. 5, 12374 (2015)

    Google Scholar 

  9. Xua, W., Shenc, R., Yana, Y., Gao, J.: Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion eletrospinning. J. Mech. Behav. Biomed. Mater. 65, 428–438 (2017)

    Google Scholar 

  10. Ginzberg, M.D., Bonshtein, I.G., Agbaria, R., Cohen, S.: Tissue Eng. 9, 757–763 (2003)

    Google Scholar 

  11. Paul, W., Sharma, C.P.: Trends. Biomater. Artif. Organ. 18, 18–23 (2004)

    Google Scholar 

  12. Nie, H., He, A., Zheng, J., Xu, S., Li, J., Han, C.: Effects of chain conformation and entanglement on the electrospinning of pure alginate. Biomacromolecules. 9(5), 1362–1365 (2008)

    CAS  Google Scholar 

  13. Safi, S., Morshed, M., Hosseini Ravandi, S.A., Ghiaci, M.: Study of electrospinning of sodium alginate, blended solutions of sodium alginate/poly (vinyl alcohol) and sodium alginate/poly (ethylene oxide). J. Appl. Polym. Sci. 104, 3245–3255 (2007)

    CAS  Google Scholar 

  14. Rasal, R.M., Janorkar, A.V., Hirt, D.E.: Poly(lacticacid) modifications. Prog. Polym. Sci. 35, 338–356 (2010)

    CAS  Google Scholar 

  15. Montjovent, M.O., Mathieu, L., Hinz, B.: Biocompatibility of bioresorbable poly (L-lactic acid) composite scaffolds obtained by supercritical gas foaming with human fetal bone cells. Tissue Eng. 11, 1640–1649 (2005)

    CAS  Google Scholar 

  16. Zhou, C.J., Shi, Q.F., Guo, W.H., Terrell, L., Qureshi, A.T., Hayes, D.J., Wu, Q.L.: Electrospun bionano composites caffolds for bone tissue engineering by cellulose nano crystals reinforcing malei can hydride grafted PLA. ACS Appl. Mater. Interfaces. 5, 3847–3854 (2013)

    CAS  Google Scholar 

  17. Casasola, R., Thomas, N.L., Trybala, A., Georgiadou, S.: Electrospun polylacticacid (PLA) fibres: effect of different solvent systems on fibremorphology and diameter. Polymer. 55, 4728–4737 (2014)

    CAS  Google Scholar 

  18. Kikuchi, M., Koyama, Y., Takakuda, K., Miyairi, H., Shirahama, N., Tanaka, J.: In vitro change in mechanical strength of β-tricalcium phosphate/copolymerized poly-Llactide composites and their application for guided bone regeneration. J. Biomed. Mater. Res. 62, 265–272 (2002)

    CAS  Google Scholar 

  19. Sionkowska, A.: Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog Polym Scı. 36, 1254–1276 (2011)

    CAS  Google Scholar 

  20. Macha, I.J., Ozyegin, L., Chou, J., Samur, R., Oktar, F., Ben- Nissan, B.: An alternative synthesis method for di calcium phosphate (monetite) powders from Mediterranean mussel (Mytilus galloprovincialis) shells. J. Aust. Ceram. Soc. 49(2), 122–128 (2013)

    CAS  Google Scholar 

  21. Kel, D., Gökçe, H., Bilgiç, D., Agaogulları, D., Duman, I., Öveçoğlu, M.L., Kayalı, E.S., Kıyıcı, I.A., Agathopoulos, S., Oktar, F.N.: Production of natural bioceramic from land snails. Key Eng. Mater. 493–494, 287–292 (2012). www.scientific.net/KEM.493-494.287

  22. Macha, I.J., Ozyegin, L.S., Oktar, F.N., Ben-Nissan, B.: Conversion of ostrich eggshells (Struthio camelus) to calcium phosphates. J. Aust. Ceram. Soc. 51(1), 125–133 (2015)

    CAS  Google Scholar 

  23. Gunduz, O., Sahin, Y.M., Agathopoulos, S., Ben-Nissan, B., Oktar, F.N.: A new method for fabrication of nanohydroxyapatite and TCP from the sea snail Cerithium vulgatum. J. Nanomater. 6(2014). https://doi.org/10.1155/2014/382861

  24. Woo, K.M., Jun, J.H., Chen, V.J., Seo, J., Baek, J.H., Ryoo, H.M., Kim, G.S.: Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomaterials. 28, 335–343 (2007)

    CAS  Google Scholar 

  25. Desai, K., Kit, K., Li, J. J., Davidson, P. M., Zivanovic, S., & Meyer, HNanofibrous chitosan non-wovens for filtration applications. Polymer. 50, 3661–3669 (2009)

  26. Sambaer, W., Zatloukal, M., Kimmer, D.: 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process. Chem. Eng. Sci. 66, 613–623 (2011)

    CAS  Google Scholar 

  27. Zhu, Y.C., Bando, Y., Xue, D.F., Sekiguchi, T., Golberg, D., Xu, F.F., Liu, Q.L.: New boron nitride whiskers: showing strong ultraviolet and visible light luminescence. J. Phys. Chem. B. 108(20), 6193–6196 (2004)

    CAS  Google Scholar 

  28. Bhardwaj, N., Kundu, S.C.: Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28, 325–347 (2010)

    CAS  Google Scholar 

  29. Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65(1–2), 55–63 (1983)

    CAS  Google Scholar 

  30. Kalkandelen, C., Suleymanoglu, M., Kuruca, S.E., Akan, A., Oktar, F.N., Gunduz, O.: Part 2: biocompatibility evaluation of hydroxyapatite-based clinoptilolite and Al2O3 composites. J. Aust. Ceram. Soc. 53(1), 217–223 (2017)

    CAS  Google Scholar 

  31. Demir, M.M., Yilgor, I., Yilgor, E., Erman, B.: Electrospinning of polyurethanefiber. Polymer. 43, 3303–3309 (2002)

    CAS  Google Scholar 

  32. Tana, S.H., Inaia, R., Kotakib, M., Ramakrishna, S.: Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer. 46, 6128–6134 (2005)

    Google Scholar 

  33. Zong, X.H., Kim, K., Fang, D.F., Ran, S.F., Hsiao, B.S., Chu, B.: Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer. 43, 4403 (2002)

    CAS  Google Scholar 

  34. Kim, H.S., Kim, K., Jin, H.J., Chin, I.J.: Morphological characterization of electrospun nano-fibrous membranes of biodegradable poly(L-lactide) and poly (lactideco- glycolide). Macromol. Symp. 224, 145 (2005)

    CAS  Google Scholar 

  35. Haghi, A.K., Akbari, M.: Trends in electrospinning of natural nanofibers. Phys. Status Solidi (A) Appl. Mater. Sci. 204, 1830–1834 (2007). https://doi.org/10.1002/pssa

  36. Jiang, H.L., Fang, D.F., Hsiao, B.S., Chu, B., Chen, W.L.: Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules. 5, 326 (2004)

    CAS  Google Scholar 

  37. Huang, L., Nagapudi, K., Apkarian, R.P., Chaikof, E.L.: Engineered collagen-PEO nanofibers and fabrics. J. Biomater. Sci. Polym. Ed. 12, 979 (2001)

    CAS  Google Scholar 

  38. Shalumon, K.T., Anulekha, K.H., Nair, S.V., Nair, S.V., Chennazhi, K.P., Jayakumar, R.: Sodium alginate/poly (vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int. J. Biol. Macromol. 49, 247–254 (2011)

    CAS  Google Scholar 

  39. Zhang, C., Wang, L., Zhai, T., Wang, X., Dan, Y., Turng, L.S.: The surface grafting of graphene oxide with poly (ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications. J. Mech. Behav. Biomed. Mater. 53, 403–413 (2016). https://doi.org/10.1016/j.jmbbm.2015.08.043

    Article  CAS  Google Scholar 

  40. Zheng, J., Yu, X., Wang, C., Cao, Z., Yang, H., Ma, D., Xu, X.: Facile synthesis of three-dimensional reinforced Sn@polyaniline/sodium alginate nanofiber hydrogel network for high performance lithium-ion battery. J. Mater. Sci. Mater. Electron. 27, 4457–4464 (2016). https://doi.org/10.1007/s10854-016-4317-8

    Article  CAS  Google Scholar 

  41. Moreira, A.P.D., Sader, M.S., Soares, G.D.d.A., Leão, M.H.M.R.: Strontium incorporation on microspheres of alginate/β-tricalcium phosphate as delivery matrices. Mater. Res. 17(4), 967–973 (2014)

    Google Scholar 

  42. Pham, Q.P., Sharma, U., Mikos, A.G.: Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 12(5), 1197–1211 (2006)

    CAS  Google Scholar 

  43. Fan, H.S., Wen, X.T., Tan, Y.F., Wang, R., Cao, H.D., Zhang, X.D.: Compare of electrospinning PLA and PLA/β-TCP scaffold in vitro. Mater. Sci. Forum. 475-479, 2379–2382 (2005)

    CAS  Google Scholar 

  44. Karacan, I., Gunduz, O., Ozyegin, L.S., Gökce, H., Ben-Nissan, B., Akyol, S., Oktar, F.N.: The natural nano-bioceramic powder production from organ pipe red coral (Tubipora musica) by a simple chemical conversion method. J. Aust. Ceram. Soc. 54, 317–329 (2018)

    CAS  Google Scholar 

  45. Gunduz, O., Sahin, Y.M., Agathopoulos, S., Ağaoğulları, D., Gökçe, H., Kayali, E.S., Aktas, C., Ben-Nissan, B., Oktar, F.N.: Nano calcium phosphate powder production through chemical agitation from Atlantic deer cowrie shells (Cypraea cervus Linnaeus). Key Eng. Mater. 587, 80–85 (2014)

    CAS  Google Scholar 

  46. Munteanu, B.S., Aytac, Z., Pricope, G.M., Uyar, T.: Polylactic acid (PLA)/silver-NP/VitaminE bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity. J. Nanopart. Res. 16(10), 2643 (2014). https://doi.org/10.1007/s11051-014-2643-4

    Article  CAS  Google Scholar 

  47. Venkatesan, J., Bhatnagar, I., Manivasagan, P., Kang, K.H., Kim, S.K.: Alginate composites for bone tissue engineering. Int. J. Biol. Macromol. 72, 269–281 (2015)

    CAS  Google Scholar 

  48. Hong, Z., Qiu, X., Sun, J., Deng, M., Chen, X., Jing, X.: Grafting polymerization of L-lactide on the surface of hydroxyapatite nanocrystals. Polymer. 45(19), 6699–6706 (2004)

    CAS  Google Scholar 

  49. Zhang, C.Y., Lu, H., Zhuang, Z., Wang, X.P., Fang, Q.F.: Nano-hydroxyapatite/poly (L-lactic acid) composite synthesized by a modified in situ precipitation: preparation and properties. J. Mater. Sci. Mater. Med. 21, 3077–3083 (2010). https://doi.org/10.1007/s10856-010-4161-y

    Article  CAS  Google Scholar 

  50. Ma, H., Su, W., Tai, Z., Sun, D., Yan, X., Liu, B., Xue, Q.: Preparation and cytocompatibility of polylactic acid/hydroxyapatite/ graphene oxide nanocomposite fibrous membrane. 57(23), 3051–3058 (2012). https://doi.org/10.1007/s11434-012-5336-3

  51. Venkatesan, J., Bhatnagar, I., Manivasagan, P., Kang, K.H., Kim, S.K.: Alginate composites for bone tissue engineering: a review. Int. J. Biol. Macromol. 72, 269–281 (2015)

    CAS  Google Scholar 

  52. Tajbakhsh, S., Hajiali, F.: A comprehensive study on the fabrication and properties of biocomposites of poly (lactic acid)/ceramics for bone tissue engineering. Mater. Sci. Eng. 70, 897–912 (2017)

    CAS  Google Scholar 

Download references

Funding

This study has been funded by the Ministry of Development, Turkey; project no: 2016K121280.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faik Nuzhet Oktar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cesur, S., Oktar, F.N., Ekren, N. et al. Preparation and characterization of electrospun polylactic acid/sodium alginate/orange oyster shell composite nanofiber for biomedical application. J Aust Ceram Soc 56, 533–543 (2020). https://doi.org/10.1007/s41779-019-00363-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00363-1

Keywords

Navigation