Skip to main content

Advertisement

Log in

Synergistic effect in absorption properties of brown carbon and elemental carbon over IGP during weak south-west monsoon

  • Original Paper
  • Published:
Aerosol Science and Engineering Aims and scope Submit manuscript

Abstract

Recent ground-based measurements reveal that model-based observations are underestimating absorption properties and direct radiative forcing (DRF) due to carbonaceous species by a factor of 2–3 over South and East Asia. Thus, to better constraint these parameters associated with carbonaceous species, seasonal variability records through ground-based measurements are very essential. In this context, we report herein the absorption properties of water-extractable brown carbon (BrC), elemental carbon (EC), and BrC + EC and DRF of BrC and BrC + EC (relative to EC) over the Indo-Gangetic Plain (IGP) during a weak monsoon season [July–September 2015; influenced by El Niño and PDO (Pacific Decadal Oscillation)]. PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 μm) samples (n = 31) have been assessed from central IGP location at Kanpur. Absorption coefficient at 365 nm (b abs-365) of BrC, EC, and BrC + EC centers at 3.6, 8.1, and 11.4 Mm−1, respectively. Strong linear regression correlation (R = 0.8) of b abs-365 of BrC with sea-salt and mineral dust corrected potassium (\({\text{K}}^{ + }_{\text{BB}}\)) indicates biomass burning as the predominant source of BrC over the region in this study. Synergistic effect in b abs of BrC + EC (relative to that of EC) increases conspicuously (enhanced by a factor  varying from 1.05 to 1.21) with an increase in wavelength from UV (365 nm) to visible region (660 nm). DRF (relative to EC) of BrC during monsoon season ranges from 3.9 to 23.8 (13.0 ± 5.0) %, whereas total DRF (BrC + EC) ranges from 111.0 to 148.2 (126.6 ± 10.0) %. Individual contribution of BrC and EC to total DRF has been estimated as 10 and 79.5%, respectively. The remaining contribution (10.5%) to total DRF has been attributed to synergism in absorption properties (i.e., b abs) of BrC + EC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andreae MO (1983) Soot carbon and excess fine potassium: long-range transport of combustion-derived aerosols. Science 220(4602):1148–1151. doi:10.1126/science.220.4602.1148

    Article  Google Scholar 

  • Andreae MO, Gelencsér A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6(10):3131–3148. doi:10.5194/acp-6-3131-2006

    Article  Google Scholar 

  • Artaxo P, Martins JV, Yamasoe MA, Procópio AS, Pauliquevis TM, Andreae MO et al (2002) Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia. J Geophys Res Atmos 107(D20):8081. doi:10.1029/2001jd000666

    Article  Google Scholar 

  • Birch ME, Cary RA (1996) Elemental carbon-based method for occupational monitoring of particulate diesel exhaust: methodology and exposure issues. Analyst 121(9):1183–1190. doi:10.1080/02786829608965393

    Article  Google Scholar 

  • Bond TC (2001) Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion. Geophys Res Lett 28(21):4075–4078. doi:10.1029/2001gl013652

    Article  Google Scholar 

  • Bond TC, Habib G, Bergstrom RW (2006) Limitations in the enhancement of visible light absorption due to mixing state. J Geophys Res Atmos. doi:10.1029/2006jd007315

    Google Scholar 

  • Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118(11):5380–5552. doi:10.1002/jgrd.50171

    Article  Google Scholar 

  • Castro LM, Pio CA, Harrison RM, Smith DJT (1999) Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmos Environ 33(17):2771–2781. doi:10.1016/S1352-2310(98)00331-8

    Article  Google Scholar 

  • Chakraborty A, Gupta T (2010) Chemical characterization and source apportionment of submicron (PM1) aerosol in Kanpur region. Aerosol Air Qual Res 10:433–445. doi:10.4209/aaqr.2009.11.0071

    Google Scholar 

  • Chakraborty A, Rajeev P, Rajput P, Gupta T (2017) Water soluble organic aerosols in indo gangetic plain (IGP): insights from aerosol mass spectrometry. Sci Total Environ 599–600:1573–1582. doi:10.1016/j.scitotenv.2017.05.142

    Article  Google Scholar 

  • Chen Y, Bond TC (2010) Light absorption by organic carbon from wood combustion. Atmos Chem Phys 10(4):1773–1787. doi:10.5194/acp-10-1773-2010

    Article  Google Scholar 

  • Cheng Y, He KB, Zheng M, Duan FK, Du ZY, Ma YL et al (2011) Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China. Atmos Chem Phys 11(22):11497–11510. doi:10.5194/acp-11-11497-2011

    Article  Google Scholar 

  • Cheng Y, He K-b Du, Z-y Engling G, J-m Liu, Y-l Ma et al (2016) The characteristics of brown carbon aerosol during winter in Beijing. Atmos Environ 127:355–364. doi:10.1016/j.atmosenv.2015.12.035

    Article  Google Scholar 

  • Cheng Y, K-b He, Engling G, Weber R, Liu J-m, Du Z-y et al (2017) Brown and black carbon in Beijing aerosol: implications for the effects of brown coating on light absorption by black carbon. Sci Total Environ 599–600:1047–1055. doi:10.1016/j.scitotenv.2017.05.061

    Article  Google Scholar 

  • Chung CE, Ramanathan V, Decremer D (2012) Observationally constrained estimates of carbonaceous aerosol radiative forcing. Proc Natl Acad Sci 109(29):11624–11629. doi:10.1073/pnas.1203707109

    Article  Google Scholar 

  • Cui X, Wang X, Yang L, Chen B, Chen J, Andersson A et al (2016) Radiative absorption enhancement from coatings on black carbon aerosols. Sci Total Environ 551:51–56. doi:10.1016/j.scitotenv.2016.02.026

    Article  Google Scholar 

  • Feng Y, Ramanathan V, Kotamarthi VR (2013) Brown carbon: a significant atmospheric absorber of solar radiation? Atmos Chem Phys 13(17):8607–8621. doi:10.5194/acp-13-8607-2013

    Article  Google Scholar 

  • Gupta T, Mandaria A (2013) Sources of submicron aerosol during fog dominated wintertime at Kanpur. Environ Sci Pollut Res. doi:10.1007/s11356-11013-11580-11356. doi:10.1007/s11356-014-2496-5

  • Gupta T, Demokritou P, Koutrakis P (2004) Effects of physicochemical properties of ultrafine particles on the performance of an ultrafine particle concentrator. Aerosol Sci Technol 38:37–45. doi:10.1080/027868290502272

    Article  Google Scholar 

  • Gustafsson Ö, Ramanathan V (2016) Convergence on climate warming by black carbon aerosols. Proc Natl Acad Sci 113(16):4243–4245. doi:10.1073/pnas.1603570113

    Article  Google Scholar 

  • Gustafsson Ö, Kruså M, Zencak Z, Sheesley RJ, Granat L, Engström E et al (2009) Brown clouds over South Asia: biomass or fossil fuel combustion? Science 323(5913):495–498. doi:10.1126/science.1164857

    Article  Google Scholar 

  • Hecobian A, Zhang X, Zheng M, Frank N, Edgerton ES, Weber RJ (2010) Water-soluble organic aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States. Atmos Chem Phys 10(13):5965–5977. doi:10.5194/acp-10-5965-2010

    Article  Google Scholar 

  • Hoffer A, Kiss G, Blazsó M, Gelencsér A (2004) Chemical characterization of humic-like substances (HULIS) formed from a lignin-type precursor in model cloud water. Geophys Res Lett 31(6):L06115. doi:10.1029/2003gl018962

    Article  Google Scholar 

  • Hoffer A, Gelencsér A, Guyon P, Kiss G, Schmid O, Frank GP et al (2006) Optical properties of humic-like substances (HULIS) in biomass-burning aerosols. Atmos Chem Phys 6(11):3563–3570. doi:10.5194/acp-6-3563-2006

    Article  Google Scholar 

  • Kaul DS, Gupta T, Tripathi SN, Tare V, Collett JL (2011) Secondary organic aerosol: a comparison between foggy and nonfoggy days. Environ Sci Technol 45(17):7307–7313. doi:10.1021/es201081d

    Article  Google Scholar 

  • Keene WC, Pszenny AAP, Galloway JN, Hawley ME (1986) Sea-Salt corrections and interpretation of constituent ratios in marine precipitation. J Geophys Res 91:6647–6658. doi:10.1029/JD091iD06p06647

    Article  Google Scholar 

  • Kirchstetter TW, Thatcher TL (2012) Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation. Atmos Chem Phys 12(14):6067–6072. doi:10.5194/acp-12-6067-2012

    Article  Google Scholar 

  • Kirchstetter TW, Novakov T, Hobbs PV (2004) Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J Geophys Res: Atmos 109(D21):D21208. doi:10.1029/2004jd004999

    Article  Google Scholar 

  • Kirillova EN, Andersson A, Tiwari S, Srivastava AK, Bisht DS, Gustafsson Ö (2014) Water-soluble organic carbon aerosols during a full New Delhi winter: Isotope-based source apportionment and optical properties. J Geophys Res Atmos 119(6):2013JD020041. doi:10.1002/2013jd020041

    Article  Google Scholar 

  • Kumar A, Gupta T (2015) Development and field evaluation of a multiple slit nozzle-based high volume PM2.5 inertial impactor assembly (HVIA). Aerosol Air Qual Res 15:1188–1200. doi:10.4209/aaqr.2009.11.0071

    Article  Google Scholar 

  • Lack DA, Bahreini R, Langridge JM, Gilman JB, Middlebrook AM (2013) Brown carbon absorption linked to organic mass tracers in biomass burning particles. Atmos Chem Phys 13(5):2415–2422. doi:10.5194/acp-13-2415-2013

    Article  Google Scholar 

  • Levinson R, Akbari H, Berdahl P (2010) Measuring solar reflectance—Part I: defining a metric that accurately predicts solar heat gain. Sol Energy 84(9):1717–1744. doi:10.1016/j.solener.2010.04.018

    Article  Google Scholar 

  • Liu J, Bergin M, Guo H, King L, Kotra N, Edgerton E et al (2013) Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light absorption. Atmos Chem Phys 13(24):12389–12404. doi:10.5194/acp-13-12389-2013

    Article  Google Scholar 

  • Park SS, Yu J (2016) Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments. Atmos Environ 136:114–122. doi:10.1016/j.atmosenv.2016.04.022

    Article  Google Scholar 

  • Rajeev P, Rajput P, Gupta T (2016) Chemical characteristics of aerosol and rain water during an El-Niño and PDO influenced Indian summer monsoon. Atmos Environ 145:192–200. doi:10.1016/j.atmosenv.2016.09.026

    Article  Google Scholar 

  • Rajput P, Sarin MM, Rengarajan R, Singh D (2011) Atmospheric polycyclic aromatic hydrocarbons (PAHs) from post-harvest biomass burning emissions in the Indo-Gangetic Plain: isomer ratios and temporal trends. Atmos Environ 45(37):6732–6740. doi:10.1016/j.atmosenv.2011.08.018

    Article  Google Scholar 

  • Rajput P, Sarin M, Kundu SS (2013) Atmospheric particulate matter (PM2.5), EC, OC, WSOC and PAHs from NE–Himalaya: abundances and chemical characteristics. Atmos Poll Res 4(2):214–221. doi:10.5094/APR.2013.022

    Article  Google Scholar 

  • Rajput P, Sarin MM, Sharma D, Singh D (2014a) Atmospheric polycyclic aromatic hydrocarbons and isomer ratios as tracers of biomass burning emissions in Northern India. Environ Sci Pollut Res 21(8):5724–5729. doi:10.1007/s11356-014-2496-5

    Article  Google Scholar 

  • Rajput P, Sarin MM, Sharma D, Singh D (2014b) Characteristics and emission budget of carbonaceous species from post-harvest agricultural-waste burning in source region of the Indo-Gangetic Plain. Tellus-B. doi:10.3402/tellusb.v66.21026

    Google Scholar 

  • Rajput P, Sarin MM, Sharma D, Singh D (2014c) Organic aerosols and inorganic species from post-harvest agricultural-waste burning emissions over northern India: impact on mass absorption efficiency of elemental carbon. Env Sci Process Impact 16(10):2371–2379. doi:10.1039/c4em00307a

    Article  Google Scholar 

  • Rajput P, Mandaria A, Kachawa L, Singh DK, Singh AK, Gupta T (2015) Wintertime source-apportionment of PM1 from Kanpur in the Indo-Gangetic plain. Clim Change 1(4):503–507

    Google Scholar 

  • Rajput P, Gupta T, Kumar A (2016a) The diurnal variability of sulfate and nitrate aerosols during wintertime in the Indo-Gangetic Plain: implications for heterogeneous phase chemistry. RSC Adv 6(92):89879–89887. doi:10.1039/C6RA19595D

    Article  Google Scholar 

  • Rajput P, Mandaria A, Kachawa L, Singh DK, Singh AK, Gupta T (2016b) Chemical characterization and source-apportionment of PM1 during massive loading at an urban location in Indo-Gangetic Plain: impact of local sources and long-range transport. Tellus-B. doi:10.3402/tellusb.v68.30659

    Google Scholar 

  • Rajput P, Anjum MH, Gupta T (2017) One year record of bioaerosols and particles concentration in Indo-Gangetic Plain: implications of biomass burning emissions to high-level of endotoxin exposure. Environ Pollut 224:98–106. doi:10.1016/j.envpol.2017.01.045

    Article  Google Scholar 

  • Ram K, Sarin MM (2009) Absorption coefficient and site-specific mass absorption efficiency of elemental carbon in aerosols over urban, rural, and high-altitude sites in India. Environ Sci Technol 43(21):8233–8239. doi:10.1021/es9011542

    Article  Google Scholar 

  • Ram K, Sarin MM, Tripathi SN (2010) Inter-comparison of thermal and optical methods for determination of atmospheric black carbon and attenuation coefficient from an urban location in northern India. Atmos Res 97(3):335–342. doi:10.1016/j.atmosres.2010.04.006

    Article  Google Scholar 

  • Ramanathan V, Li F, Ramana MV, Praveen PS, Kim D, Corrigan CE et al (2007) Atmospheric brown clouds: Hemispherical and regional variations in long-range transport, absorption, and radiative forcing. J Geophys Res Atmos. doi:10.1029/2006jd008124

    Google Scholar 

  • Rastogi N, Patel A, Singh A, Singh D (2015) Diurnal variability in secondary organic aerosol formation over the Indo-Gangetic plain during winter using online measurement of water-soluble organic carbon. Aerosol Air Qual Res 15(6):2225–2231. doi:10.4209/aaqr.2015.02.0097

    Google Scholar 

  • Shamjad PM, Tripathi SN, Thamban NM, Vreeland H (2016) Refractive index and absorption attribution of highly absorbing brown carbon aerosols from an urban Indian City-Kanpur. Sci Rep 6:37735. doi:10.1038/srep37735

    Article  Google Scholar 

  • Shen G, Chen Y, Wei S, Fu X, Zhu Y, Tao S (2013) Mass absorption efficiency of elemental carbon for source samples from residential biomass and coal combustions. Atmos Environ 79:79–84. doi:10.1016/j.atmosenv.2013.05.082

    Article  Google Scholar 

  • Singh DK, Gupta T (2016) Role of transition metals with water soluble organic carbon in the formation of secondary organic aerosol and metallo-organics in PM1 sampled during post monsoon and pre-winter time. J Aerosol Sci 94:56–69. doi:10.1016/j.jaerosci.2016.01.002

    Article  Google Scholar 

  • Singh A, Rajput P, Sharma D, Sarin MM, Singh D (2014) Black carbon and elemental carbon from postharvest agricultural-waste burning emissions in the Indo-Gangetic plain. Adv Meteorol 2014:10. doi:10.1155/2014/179301

    Google Scholar 

  • Srinivas B, Sarin MM (2014) Brown carbon in atmospheric outflow from the Indo-Gangetic Plain: mass absorption efficiency and temporal variability. Atmos Environ 89:835–843. doi:10.1016/j.atmosenv.2014.03.030

    Article  Google Scholar 

  • Srinivas B, Rastogi N, Sarin MM, Singh A, Singh D (2016) Mass absorption efficiency of light absorbing organic aerosols from source region of paddy-residue burning emissions in the Indo-Gangetic Plain. Atmos Environ 125:360–370. doi:10.1016/j.atmosenv.2015.07.017

    Article  Google Scholar 

  • Sun H, Biedermann L, Bond TC (2007) Color of brown carbon: a model for ultraviolet and visible light absorption by organic carbon aerosol. Geophys Res Lett. doi:10.1029/2007GL029797

    Google Scholar 

  • Surratt JD, GoÌmez-González Y, Chan AWH, Vermeylen R, Shahgholi M, Kleindienst TE et al (2008) Organosulfate formation in biogenic secondary organic aerosol. J Phys Chem A 112(36):8345–8378. doi:10.1021/jp802310p

    Article  Google Scholar 

  • Venkataraman C, Habib G, Eiguren-Fernandez A, Miguel AH, Friedlander SK (2005) Residential biofuels in South Asia: carbonaceous aerosol emissions and climate impacts. Science 307(5714):1454–1456. doi:10.1126/science.1104359

    Article  Google Scholar 

  • Wang X, Heald CL, Ridley DA, Schwarz JP, Spackman JR, Perring AE et al (2014) Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon. Atmos Chem Phys 14(20):10989–11010. doi:10.5194/acp-14-10989-2014

    Article  Google Scholar 

  • weather.uwyo.edu (2004) Radiosonde data, university of Wyoming, 42369: VILK. http://weather.uwyo.edu/upperair/sounding.html. Accessed 10 Aug 2015

  • Weber RJ, Sullivan AP, Peltier RE, Russell A, Yan B, Zheng M et al (2007) A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States. J Geophys Res Atmos. doi:10.1029/2007jd008408

    Google Scholar 

  • Weingartner E, Saathoff H, Schnaiter M, Streit N, Bitnar B, Baltensperger U (2003) Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. J Aerosol Sci 34(10):1445–1463. doi:10.1016/S0021-8502(03)00359-8

    Article  Google Scholar 

  • Zhang X, Lin Y-H, Surratt JD, Zotter P, Prévôt ASH, Weber RJ (2011) Light-absorbing soluble organic aerosol in Los Angeles and Atlanta: a contrast in secondary organic aerosol. Geophys Res Lett 38(21):L21810. doi:10.1029/2011gl049385

    Article  Google Scholar 

Download references

Acknowledgements

The present study has been carried out utilizing internal funds from IIT Kanpur and partial funds were provided by Indian National Science Academy (INSA) to Dr. Tarun Gupta for the completion of this study. We thank three anonymous reviewers for their suggestions that helped in improving the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Rajput.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, V., Rajput, P., Rajeev, P. et al. Synergistic effect in absorption properties of brown carbon and elemental carbon over IGP during weak south-west monsoon. Aerosol Sci Eng 1, 138–149 (2017). https://doi.org/10.1007/s41810-017-0013-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41810-017-0013-1

Keywords

Navigation