Skip to main content
Log in

Precision Optics Manufacturing and Control for Next-Generation Large Telescopes

  • Review Papers
  • Published:
Nanomanufacturing and Metrology Aims and scope Submit manuscript

Abstract

Next-generation astronomical telescopes will offer unprecedented observational and scientific capabilities to look deeper into the heavens, observe closer in time to the epoch of the Big Bang, and resolve finer details of phenomena throughout the universe. The science case for this next generation of observatories is clear, with science goals such as the discovery and exploration of extrasolar planets, exploration of dark matter and dark energy, the formation and evolution of planets, stars, galaxies, and detailed studies of the Sun. Enabling breakthrough astronomical goals requires novel and cutting-edge design choices at all stages of telescope manufacturing. In this paper, we discuss the integrated design and manufacturing of the next-generation large telescopes, from the optical design to enclosures required for optimal performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Image Credit: Giant Magellan Telescope GMTO Corporation

Fig. 6

Image Credit: ESO

Fig. 7

Image Credit: TMT International Observatory

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Image Credit: ESO/SCHOTT

Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Bernstein R, Dressler A, Apai D, Asplund M, Blum R, Brough S, Crane J, Cypriano E, Eisenstein D, Eisner J, Fabricant D, Gladders M, Greene J, Hwang N, Krause A, Papovich C, Sharp R, Simcoe R, Zaritsky D (2018) GMT Science Book 2018. Giant Magellan Telescope. GMTO, Vallenar

    Google Scholar 

  2. European Southern Observatory (2010) An expanded view of the universe: science with the European Extremely Large Telescope. Garching bei München, Germany, European Southern Observatory

  3. King HC (1955) The history of the telescope. Griffin, London

    Google Scholar 

  4. Fanson J, McCarthy PJ, Bernstein R, Angeli G, Ashby D, Bigelow B, Bouchez A, Burgett W, Chauvin E, Contos A, Figueroa F, Gray P, Groark F, Laskin R, Millan-Gabet R, Rakich A, Sandoval R, Pi M, Wheeler N (2018) Overview and status of the Giant Magellan Telescope project. In: Ground-based and airborne telescopes VII. Presented at the ground-based and airborne telescopes VII, international society for optics and photonics, p 1070012. https://doi.org/10.1117/12.2313340

  5. Martins CJAP, Leite ACO, Pedrosa POJ (2014) Fundamental cosmology with the E-ELT. Proc Int Astron Union 10:385–387. https://doi.org/10.1017/S1743921314013441

    Article  Google Scholar 

  6. Skidmore W, Anupama GC, Srianand R (2018) The Thirty Meter Telescope International Observatory facilitating transformative astrophysical science. arXiv:1806.02481[astro-ph]

  7. Skidmore W (2015) Thirty Meter Telescope detailed science case: 2015. Res Astron Astrophys 15:1945. https://doi.org/10.1088/1674-4527/15/12/001

    Article  Google Scholar 

  8. Rudnick L, NASA, JPL-Caltech (2006) Lighting up a dead star’s layers. NASA Spitzer Space Telescope. http://www.spitzer.caltech.edu/images/1675-ssc2006-19a-Lighting-up-a-Dead-Star-s-Layers. Accessed 8 Oct 2018

  9. Tamai R, Spyromilio J (2014) European extremely large telescope: progress report. In: Ground-based and airborne telescopes V. Presented at the ground-based and airborne telescopes V, international society for optics and photonics, p 91451E. https://doi.org/10.1117/12.2058467

  10. Tamai R, Cirasuolo M, González JC, Koehler B, Tuti M (2016) The E-ELT program status. In: Ground-based and airborne telescopes VI. Presented at the ground-based and airborne telescopes VI, international society for optics and photonics, p 99060W. https://doi.org/10.1117/12.2232690

  11. Lightsey PA, Atkinson CB, Clampin MC, Feinberg LD (2012) James Webb Space Telescope: large deployable cryogenic telescope in space. OE, OPEGAR 51:011003. https://doi.org/10.1117/1.OE.51.1.011003

    Article  Google Scholar 

  12. Ivezić Ž, Kahn SM, Tyson JA, Abel B, Acosta E, Allsman R, Alonso D, AlSayyad Y, Anderson SF, Andrew J, Angel JRP, Angeli GZ, Ansari R, Antilogus P, Araujo C, Armstrong R, Arndt KT, Astier P, Aubourg É, Auza N, Axelrod TS, Bard DJ, Barr JD, Barrau A, Bartlett JG, Bauer AE, Bauman BJ, Baumont S, Becker AC, Becla J, Beldica C, Bellavia S, Bianco FB, Biswas R, Blanc G, Blazek J, Blandford RD, Bloom JS, Bogart J, Bond TW, Borgland AW, Borne K, Bosch JF, Boutigny D, Brackett CA, Bradshaw A, Brandt WN, Brown ME, Bullock JS, Burchat P, Burke DL, Cagnoli G, Calabrese D, Callahan S, Callen AL, Chandrasekharan S, Charles-Emerson G, Chesley S, Cheu EC, Chiang H-F, Chiang J, Chirino C, Chow D, Ciardi DR, Claver CF, Cohen-Tanugi J, Cockrum JJ, Coles R, Connolly AJ, Cook KH, Cooray A, Covey KR, Cribbs C, Cui W, Cutri R, Daly PN, Daniel SF, Daruich F, Daubard G, Daues G, Dawson W, Delgado F, Dellapenna A, de Peyster R, de Val-Borro M, Digel SW, Doherty P, Dubois R, Dubois-Felsmann GP, Durech J, Economou F, Eracleous M, Ferguson H, Figueroa E, Fisher-Levine M, Focke W, Foss MD, Frank J, Freemon MD, Gangler E, Gawiser E, Geary JC, Gee P, Geha M, Gessner CJB, Gibson RR, Gilmore DK, Glanzman T, Glick W, Goldina T, Goldstein DA, Goodenow I, Graham ML, Gressler WJ, Gris P, Guy LP, Guyonnet A, Haller G, Harris R, Hascall PA, Haupt J, Hernandez F, Herrmann S, Hileman E, Hoblitt J, Hodgson JA, Hogan C, Huang D, Huffer ME, Ingraham P, Innes WR, Jacoby SH, Jain B, Jammes F, Jee J, Jenness T, Jernigan G, Jevremović D, Johns K, Johnson AS, Johnson MWG, Jones RL, Juramy-Gilles C, Jurić M, Kalirai JS, Kallivayalil NJ, Kalmbach B, Kantor JP, Karst P, Kasliwal MM, Kelly H, Kessler R, Kinnison V, Kirkby D, Knox L, Kotov IV, Krabbendam VL, Krughoff KS, Kubánek P, Kuczewski J, Kulkarni S, Ku J, Kurita NR, Lage CS, Lambert R, Lange T, Langton JB, Guillou LL, Levine D, Liang M, Lim K-T, Lintott CJ, Long KE, Lopez M, Lotz PJ, Lupton RH, Lust NB, MacArthur LA, Mahabal A, Mandelbaum R, Marsh DS, Marshall PJ, Marshall S, May M, McKercher R, McQueen M, Meyers J, Migliore M, Miller M, Mills DJ, Miraval C, Moeyens J, Monet DG, Moniez M, Monkewitz S, Montgomery C, Mueller F, Muller GP, Arancibia FM, Neill DR, Newbry SP, Nief J-Y, Nomerotski A, Nordby M, O’Connor P, Oliver J, Olivier SS, Olsen K, O’Mullane W, Ortiz S, Osier S, Owen RE, Pain R, Palecek PE, Parejko JK, Parsons JB, Pease NM, Peterson JM, Peterson JR, Petravick DL, Petrick MEL, Petry CE, Pierfederici F, Pietrowicz S, Pike R, Pinto PA, Plante R, Plate S, Price PA, Prouza M, Radeka V, Rajagopal J, Rasmussen AP, Regnault N, Reil KA, Reiss DJ, Reuter MA, Ridgway ST, Riot VJ, Ritz S, Robinson S, Roby W, Roodman A, Rosing W, Roucelle C, Rumore MR, Russo S, Saha A, Sassolas B, Schalk TL, Schellart P, Schindler RH, Schmidt S, Schneider DP, Schneider MD, Schoening W, Schumacher G, Schwamb ME, Sebag J, Selvy B, Sembroski GH, Seppala LG, Serio A, Serrano E, Shaw RA, Shipsey I, Sick J, Silvestri N, Slater CT, Smith JA, Smith RC, Sobhani S, Soldahl C, Storrie-Lombardi L, Stover E, Strauss MA, Street RA, Stubbs CW, Sullivan IS, Sweeney D, Swinbank JD, Szalay A, Takacs P, Tether SA, Thaler JJ, Thayer JG, Thomas S, Thukral V, Tice J, Trilling DE, Turri M, Van Berg R, Berk DV, Vetter K, Virieux F, Vucina T, Wahl W, Walkowicz L, Walsh B, Walter CW, Wang DL, Wang S-Y, Warner M, Wiecha O, Willman B, Winters SE, Wittman D, Wolff SC, Wood-Vasey WM, Wu X, Xin B, Yoachim P, Zhan H, Collaboration for the L (2008) LSST: from science drivers to reference design and anticipated data products. arXiv:0805.2366[astro-ph]

  13. Sassolas B, Teillon J, Flaminio R, Michel C, Morgado N, Pinard L (2013) Development on large band-pass filters for the wide field survey telescope LSST. In: Optical interference coatings (2013), paper MD.2. Presented at the optical interference coatings, optical society of America, MD.2. https://doi.org/10.1364/OIC.2013.MD.2

  14. Martin HM, Angel JRP, Angeli GZ, Burge JH, Gressler W, Kim DW, Kingsley JS, Law K, Liang M, Neill D, Sebag J, Strittmatter PA, Tuell MT, West SC, Woolf NJ, Xin B (2016) Manufacture and final tests of the LSST monolithic primary/tertiary mirror. In: Advances in optical and mechanical technologies for telescopes and instrumentation II. Presented at the advances in optical and mechanical technologies for telescopes and instrumentation II, international society for optics and photonics, p 99120X. https://doi.org/10.1117/12.2234501

  15. Callahan S, Gressler W, Thomas SJ, Gessner C, Warner M, Barr J, Lotz PJ, Schumacher G, Wiecha O, Angeli G, Andrew J, Claver C, Schoening B, Sebag J, Krabbendam V, Neill D, Hileman E, Muller G, Araujo C, Martinez AO, Aguado MP, García-Marchena L, Argandoña IR, de Romero FM, Rodríguez R, González JC, Venturini M (2016) Large Synoptic Survey Telescope mount final design. In: Ground-based and airborne telescopes VI. Presented at the ground-based and airborne telescopes VI, international society for optics and photonics, p 99060M. https://doi.org/10.1117/12.2232996

  16. Tritschler A, Rimmele TR, Berukoff S, Casini R, Kuhn JR, Lin H, Rast MP, McMullin JP, Schmidt W, Wöger F, Team D (2016) Daniel K. Inouye Solar Telescope: high-resolution observing of the dynamic Sun. Astron Nachr 337:1064–1069. https://doi.org/10.1002/asna.201612434

    Article  Google Scholar 

  17. Bouchez AH, Angeli GZ, Ashby DS, Bernier R, Conan R, McLeod BA, Quirós-Pacheco F, van Dam MA (2018) An overview and status of GMT active and adaptive optics. In: Adaptive optics systems VI. Presented at the adaptive optics systems VI, international society for optics and photonics, p 107030W. https://doi.org/10.1117/12.2314255

  18. Boyer C (2018) Adaptive optics program at TMT. In: Adaptive optics systems VI. Presented at the adaptive optics systems VI, international society for optics and photonics, p 107030Y. https://doi.org/10.1117/12.2313753

  19. Perrin MD, Acton DS, Lajoie C-P, Knight JS, Lallo MD, Allen M, Baggett W, Barker E, Comeau T, Coppock E, Dean BH, Hartig G, Hayden WL, Jordan M, Jurling A, Kulp T, Long J, McElwain MW, Meza L, Nelan EP, Soummer R, Stansberry J, Stark C, Telfer R, Welsh AL, Zielinski TP, Zimmerman NT (2016) Preparing for JWST wavefront sensing and control operations. In: Space telescopes and instrumentation 2016: optical, infrared, and millimeter wave. Presented at the space telescopes and instrumentation 2016: optical, infrared, and millimeter wave, international society for optics and photonics, p 99040F. https://doi.org/10.1117/12.2233104

  20. Murga G, Bilbao A, de Bilbao L, Lorentz TE (2016) Design solutions for dome and main structure (mount) of giant telescopes. In: Ground-based and airborne telescopes VI. Presented at the ground-based and airborne telescopes VI, international society for optics and photonics, p 99060C. https://doi.org/10.1117/12.2233502

  21. Murga G, Marshall HK, Lorentz TE, Ariño J, Ampuero P (2014) DKIST enclosure fabrication factory assembly and testing. In: Ground-based and airborne telescopes V. Presented at the ground-based and airborne telescopes V, international society for optics and photonics, p 914527. https://doi.org/10.1117/12.2055320

  22. Roll J, Thompson K (2012) Freeform optics: evolution? No, revolution! | SPIE Homepage: SPIE. http://spie.org/newsroom/4309-freeform-optics-evolution-no-revolution?SSO=1. Accessed 15 Nov 2018

  23. Dimmler M, Barriga P, Cayrel M, Derie F, Foerster A, Gonte F, Gonzalez JC, Jochum L, Kornweibel N, Leveque S, Lucuix C, Pettazzi L (2018) Getting ready for serial production of the segmented 39-meter ELT primary: status, challenges and strategies. In: Ground-based and airborne telescopes VII. Presented at the ground-based and airborne telescopes VII, international society for optics and photonics, p 1070043. https://doi.org/10.1117/12.2312073

  24. Crampton D, Ellerbroek B. (2005) Design and development of TMT. International Astronomical Union. In: Proceedings of the International Astronomical Union; Cambridge, vol 1, pp 410–419

  25. Seo B-J, Nissly C, Colavita M, Troy M, Roberts S, Rogers J (2018) Optical performance prediction of the Thirty Meter Telescope after initial alignment using optical modeling. In: Modeling, systems engineering, and project management for astronomy VIII. Presented at the modeling, systems engineering, and project management for astronomy VIII, international society for optics and photonics, p 107050T. https://doi.org/10.1117/12.2314351

  26. Stepp L (2012) Thirty Meter Telescope project update. In: Ground-based and airborne telescopes IV. Presented at the ground-based and airborne telescopes IV, international society for optics and photonics, p 84441G. https://doi.org/10.1117/12.928006

  27. Nella J, Atcheson PD, Atkinson CB, Au D, Bronowicki AJ, Bujanda E, Cohen A, Davies D, Lightsey PA, Lynch R, Lundquist R, Menzel MT, Mohan M, Pohner J, Reynolds P, Rivera H, Texter SC, Shuckstes DV, Simmons DDF, Smith RC, Sullivan PC, Waldie DD, Woods R (2004) James Webb Space Telescope (JWST) observatory architecture and performance. In: Optical, infrared, and millimeter space telescopes. Presented at the optical, infrared, and millimeter space telescopes, international society for optics and photonics, pp 576–588. https://doi.org/10.1117/12.548928

  28. Hubbard R (2013) M1 microroughness and dust contamination (no. 0013, rev. C), advanced technology solar telescope technical note

  29. Blalock T, Medicus K, Nelson JD (2015) Fabrication of freeform optics. In: Optical manufacturing and testing XI. Presented at the optical manufacturing and testing XI, international society for optics and photonics, p 95750H. https://doi.org/10.1117/12.2188523

  30. Fess E, Bechtold M, Wolfs F, Bechtold R (2013) Developments in precision optical grinding technology. In: Optifab 2013. Presented at the Optifab 2013, international society for optics and photonics, p 88840L. https://doi.org/10.1117/12.2029334

  31. Walker DD, Brooks D, King A, Freeman R, Morton R, McCavana G, Kim S-W (2003) The ‘precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces. Opt Express OE 11:958–964. https://doi.org/10.1364/OE.11.000958

    Article  Google Scholar 

  32. Gurganus D, Owen JD, Dutterer BS, Novak S, Symmons A, Davies MA (2018) Precision glass molding of freeform optics. In: Optical manufacturing and testing XII. Presented at the optical manufacturing and testing XII, international society for optics and photonics, p 107420Q. https://doi.org/10.1117/12.2320574

  33. Risse S, Scheiding S, Beier M, Gebhardt A, Damm C, Peschel T (2014) Ultra-precise manufacturing of aspherical and freeform mirrors for high resolution telescopes. In: Advances in optical and mechanical technologies for telescopes and instrumentation. Presented at the advances in optical and mechanical technologies for telescopes and instrumentation, international society for optics and photonics, p 91510M. https://doi.org/10.1117/12.2056496

  34. Fang F, Xu F (2018) Recent advances in micro/nano-cutting: effect of tool edge and material properties. Nanomanufacturing Metrol 1:4–31. https://doi.org/10.1007/s41871-018-0005-z

    Article  Google Scholar 

  35. Beier M, Scheiding S, Gebhardt A, Loose R, Risse S, Eberhardt R, Tünnermann A (2013) Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF). In: Optifab 2013. Presented at the Optifab 2013, international society for optics and photonics, p 88840S. https://doi.org/10.1117/12.2035986

  36. Martin HM, Allen RG, Burge JH, Davis JM, Davison WB, Johns M, Kim DW, Kingsley JS, Law K, Lutz RD, Strittmatter PA, Su P, Tuell MT, West SC, Zhou P (2014) Production of primary mirror segments for the Giant Magellan Telescope. In: Advances in optical and mechanical technologies for telescopes and instrumentation. Presented at the advances in optical and mechanical technologies for telescopes and instrumentation, international society for optics and photonics, p 91510J. https://doi.org/10.1117/12.2057012

  37. Martin HM, Allen RG, Burge JH, Kim DW, Kingsley JS, Law K, Lutz RD, Strittmatter PA, Su P, Tuell MT, West SC, Zhou P (2012) Production of 8.4 m segments for the Giant Magellan Telescope. In: Modern technologies in space- and ground-based telescopes and instrumentation II. Presented at the modern technologies in space- and ground-based telescopes and instrumentation II, international society for optics and photonics, p 84502D. https://doi.org/10.1117/12.926347

  38. West SC, Angel R, Cuerden B, Davison W, Hagen J, Martin HM, Kim DW, Sisk B (2014) Development and results for stressed-lap polishing of large telescope mirrors1. In: Classical optics 2014 (2014), paper OTh2B.4. Presented at the optical fabrication and testing, optical society of america, p OTh2B.4. https://doi.org/10.1364/OFT.2014.OTh2B.4

  39. Kim DW, Martin HM, Burge JH (2011) Calibration and optimization of computer-controlled optical surfacing for large optics. In: Optical manufacturing and testing IX. Presented at the optical manufacturing and testing IX, international society for optics and photonics, p 812615. https://doi.org/10.1117/12.893878

  40. Cole G (2017) Optical fabrication and metrology for the thirty meter telescope primary mirror segments. In: Optical design and fabrication 2017 (Freeform, IODC, OFT) (2017), paper OW1B.4. Presented at the optical fabrication and testing, optical society of America, p OW1B.4. https://doi.org/10.1364/OFT.2017.OW1B.4

  41. Geyl R, Bardon D, Bourgois R, Ferachoglou N, Harel E, Couteret C (2018) First steps in ELT optics polishing. In: Fifth European seminar on precision optics manufacturing. Presented at the fifth European seminar on precision optics manufacturing, international society for optics and photonics, p 1082904. https://doi.org/10.1117/12.2317604

  42. Gray C, Baker I, Davies G, Evans R, Field N, Fox-Leonard T, Messelink W, Mitchell J, Rees P, Waine S, Walker DD, Yu G (2013) Fast manufacturing of E-ELT mirror segments using CNC polishing. In: Optical manufacturing and testing X. Presented at the optical manufacturing and testing X, international society for optics and photonics, p 88380K. https://doi.org/10.1117/12.2023475

  43. Yu G, Walker DD, Li H (2012) Research on fabrication of mirror segments for E-ELT. In: 6th international symposium on advanced optical manufacturing and testing technologies: advanced optical manufacturing technologies. Presented at the 6th international symposium on advanced optical manufacturing and testing technologies: advanced optical manufacturing technologies, international society for optics and photonics, p 841602. https://doi.org/10.1117/12.2009290

  44. Acosta D, Albajez JA, Yagüe-Fabra JA, Velázquez J (2018) Verification of machine tools using multilateration and a geometrical approach. Nanomanufacturing Metrol 1:39–44. https://doi.org/10.1007/s41871-018-0006-y

    Article  Google Scholar 

  45. Gallagher B, Bergeland M, Brown B, Chaney D, Copp T, Lewis J, Shogrin B, Smith K, Sokol J, Hadaway J, Glatzel H, Johnson P, Lee A, Patriarca D, Stevenson I, Cluney J, Parsonage T, Calvert J, Rodgers B, McKay A, Texter S, Cohen L, Feinberg L (2011) JWST mirror production status. In: UV/Optical/IR space telescopes and instruments: innovative technologies and concepts V. Presented at the UV/Optical/IR space telescopes and instruments: innovative technologies and concepts V, international society for optics and photonics, p 814607. https://doi.org/10.1117/12.892326

  46. Trumper I, Jannuzi BT, Kim DW (2018) Emerging technology for astronomical optics metrology. Opt Lasers Eng Opt Tools Metrol Imaging Diagn 104:22–31. https://doi.org/10.1016/j.optlaseng.2017.09.009

    Google Scholar 

  47. Rees PCT, Gray C (2015) Metrology requirements for the serial production of ELT primary mirror segments. In: Optical manufacturing and testing XI. Presented at the optical manufacturing and testing XI, international society for optics and photonics, p 957508. https://doi.org/10.1117/12.2189783

  48. Bos A, Henselmans R, Rosielle PCJN, Steinbuch M (2015) Nanometre-accurate form measurement machine for E-ELT M1 segments. Precis Eng 40:14–25. https://doi.org/10.1016/j.precisioneng.2014.09.008

    Article  Google Scholar 

  49. Mueller U (2016) Production metrology design and calibration for TMT primary mirror fabrication used at multiple manufacturing sites. In: Ground-based and airborne telescopes VI. Presented at the ground-based and airborne telescopes VI, international society for optics and photonics, p 99060Z. https://doi.org/10.1117/12.2232036

  50. Anderson DS, Burge JH (1995) Swing-arm profilometry of aspherics. In: Optical manufacturing and testing. Presented at the optical manufacturing and testing, international society for optics and photonics, pp 169–180. https://doi.org/10.1117/12.218421

  51. Callender MJ, Efstathiou A, King CW, Walker DD, Gee AE, Lewis AJ, Oldfield S, Steel RM (2006) A swing arm profilometer for large telescope mirror element metrology. In: Optomechanical technologies for astronomy. Presented at the optomechanical technologies for astronomy, international society for optics and photonics, p 62732R. https://doi.org/10.1117/12.671304

  52. Su P, Wang Y, Oh CJ, Parks RE, Burge JH (2011) Swing arm optical CMM: self calibration with dual probe shear test. In: Optical manufacturing and testing IX. Presented at the optical manufacturing and testing IX, international society for optics and photonics, p 81260W. https://doi.org/10.1117/12.894203

  53. Zhang P, Li J, Yu G, Walker DD (2016) Development of swinging part profilometer for optics. In: Optics and measurement international conference 2016. Presented at the optics and measurement international conference 2016, international society for optics and photonics, p 101510B. https://doi.org/10.1117/12.2256295

  54. Zobrist TL, Burge JH, Martin HM (2009) Laser tracker surface measurements of the 8.4 m GMT primary mirror segment. In: Optical manufacturing and testing VIII. Presented at the optical manufacturing and testing VIII, international society for optics and photonics, p 742613. https://doi.org/10.1117/12.826706

  55. Jang Y-S, Kim S-W (2018) Distance measurements using mode-locked lasers: a review. Nanomanufacturing Metrol 1:131–147. https://doi.org/10.1007/s41871-018-0017-8

    Article  Google Scholar 

  56. Knauer MC, Kaminski J, Hausler G (2004) Phase measuring deflectometry: a new approach to measure specular free-form surfaces. 366–376. https://doi.org/10.1117/12.545704

  57. Huang R, Su P, Horne T, Zappellini GB, Burge JH (2013) Measurement of a large deformable aspherical mirror using SCOTS (Software Configurable Optical Test System). In: Optical manufacturing and testing X. Presented at the optical manufacturing and testing X, international society for optics and photonics, p 883807. https://doi.org/10.1117/12.2024336

  58. Su T, Park WH, Parks RE, Su P, Burge JH (2011) Scanning long-wave optical test system: a new ground optical surface slope test system. In: Optical manufacturing and testing IX. Presented at the optical manufacturing and testing IX, international society for optics and photonics, p 81260E. https://doi.org/10.1117/12.892666

  59. Oh CJ, Lowman AE, Smith GA, Su P, Huang R, Su T, Kim D, Zhao C, Zhou P, Burge JH (2016) Fabrication and testing of 4.2 m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope. Advances in optical and mechanical technologies for telescopes and instrumentation II. https://doi.org/10.1117/12.2229324

  60. Yoo H, Smith GA, Oh CJ, Lowman AE, Dubin M (2018) Improvements in the scanning long-wave optical test system. In: Optical manufacturing and testing XII. Presented at the optical manufacturing and testing XII, international society for optics and photonics, p 1074216. https://doi.org/10.1117/12.2321265

  61. Allen R, Su P, Burge JH, Cuerden B, Martin HM (2010) Scanning pentaprism test for the GMT 8.4-m off-axis segments. In: Modern technologies in space- and ground-based telescopes and instrumentation. Presented at the modern technologies in space- and ground-based telescopes and instrumentation, international society for optics and photonics, p 773911. https://doi.org/10.1117/12.857901

  62. Schulz M, Ehret G, Křen P (2013) High accuracy flatness metrology within the European metrology research program. Nuclear instruments and methods in physics research section A: accelerators, spectrometers, detectors and associated equipment. In: The 4th international workshop on metrology for x-ray optics, mirror design, and fabrication, vol 710, pp 37–41. https://doi.org/10.1016/j.nima.2012.10.112

  63. Huang R (n.d.) High precision optical surface metrology using deflectometry. The University of Arizona. http://hdl.handle.net/10150/581252

  64. Kim DW, Burge JH, Davis JM, Martin HM, Tuell MT, Graves LR, West SC (2016) New and improved technology for manufacture of GMT primary mirror segments. In: Advances in optical and mechanical technologies for telescopes and instrumentation II. Presented at the advances in optical and mechanical technologies for telescopes and instrumentation II, international society for optics and photonics, p 99120P. https://doi.org/10.1117/12.2231911

  65. Huang R, Su P, Burge JH, Huang L, Idir M (2015) High-accuracy aspheric x-ray mirror metrology using Software Configurable Optical Test System/deflectometry. OE, OPEGAR 54:084103. https://doi.org/10.1117/1.OE.54.8.084103

    Article  Google Scholar 

  66. Maldonado AV, Su P, Burge JH (2014) Development of a portable deflectometry system for high spatial resolution surface measurements. Appl Opt, AO 53:4023–4032. https://doi.org/10.1364/AO.53.004023

    Article  Google Scholar 

  67. Lowman AE, Smith GA, Harrison L, West SC, Oh CJ (2018) Measurement of large on-axis and off-axis mirrors using software configurable optical test system (SCOTS). In: Advances in optical and mechanical technologies for telescopes and instrumentation III. Presented at the advances in optical and mechanical technologies for telescopes and instrumentation III, international society for optics and photonics, p 107061E. https://doi.org/10.1117/12.2313855

  68. Chen S, Xue S, Dai Y, Li S (2017) Subaperture stitching test of convex aspheres by using the reconfigurable optical null. Opt Laser Technol 91:175–184. https://doi.org/10.1016/j.optlastec.2016.12.026

    Article  Google Scholar 

  69. Scheiding S, Beier M, Zeitner U-D, Risse S, Gebhardt A (2013) Freeform mirror fabrication and metrology using a high performance test CGH and advanced alignment features. In: Advanced fabrication technologies for micro/nano optics and photonics VI. Presented at the advanced fabrication technologies for micro/nano optics and photonics VI, international society for optics and photonics, p 86130J. https://doi.org/10.1117/12.2001690

  70. Zhou P, Martin H, Zhao C, Burge JH (2012) Mapping distortion correction for GMT interferometric test. In: Imaging and applied optics technical papers (2012), paper OW3D.2. Presented at the optical fabrication and testing, optical society of America, p OW3D.2. https://doi.org/10.1364/OFT.2012.OW3D.2

  71. Hadaway JB, Wells C, Olczak G, Waldman M, Whitman T, Cosentino J, Connolly M, Chaney D, Telfer R (2016) Performance of the primary mirror center-of-curvature optical metrology system during cryogenic testing of the JWST Pathfinder telescope. In: Space telescopes and instrumentation 2016: optical, infrared, and millimeter wave. Presented at the space telescopes and instrumentation 2016: optical, infrared, and millimeter wave, international society for optics and photonics, p 99044E. https://doi.org/10.1117/12.2234741

  72. Gray P, Ciattaglia E, Dupuy C, Gago F, Guisard S, Marrero J, Ridings R, Wright A (2016) E-ELT assembly, integration, and technical commissioning plans. In: Ground-based and airborne telescopes VI. Presented at the ground-based and airborne telescopes VI, international society for optics and photonics, p 99060X. https://doi.org/10.1117/12.2230965

  73. Zimmerman DC (2010) Feasibility studies for the alignment of the Thirty Meter Telescope. Appl Opt, AO 49:3485–3498. https://doi.org/10.1364/AO.49.003485

    Article  Google Scholar 

  74. Troy M, Chanan G, Michaels S, Dekens F, Hein R, Herzig S, Karban R, Nissly C, Roberts J, Rud M, Seo B-J (2016) The alignment and phasing system for the Thirty Meter Telescope: risk mitigation and status update. In: Ground-based and airborne telescopes VI. Presented at the ground-based and airborne telescopes VI, international society for optics and photonics, p 99066A. https://doi.org/10.1117/12.2231913

  75. van Dam MA, McLeod BA, Bouchez AH (2016) Dispersed fringe sensor for the Giant Magellan Telescope. Appl Opt, AO 55:539–547. https://doi.org/10.1364/AO.55.000539

    Article  Google Scholar 

  76. Kopon D, McLeod B, Bouchez A, Catropa D, van Dam MA, Frostig D, Kansky J, McCracken K, Podgorski W, McMuldroch S, D’Arco J, Close L, Males JR, Morzinski K (2018) Preliminary on-sky results of the next generation GMT phasing sensor prototype. In: Adaptive optics systems VI. Presented at the adaptive optics systems VI, international society for optics and photonics, p 107030X. https://doi.org/10.1117/12.2314381

  77. Bouchez AH, McLeod BA, Acton DS, Kanneganti S, Kibblewhite EJ, Shectman SA, van Dam MA (2012) The Giant Magellan Telescope phasing system. In: Adaptive optics systems III. Presented at the adaptive optics systems III, international society for optics and photonics, p 84473S. https://doi.org/10.1117/12.927163

  78. Xin B, Claver C, Liang M, Chandrasekharan S, Angeli G, Shipsey I (2015) Curvature wavefront sensing for the large synoptic survey telescope. Appl Opt, AO 54:9045–9054. https://doi.org/10.1364/AO.54.009045

    Article  Google Scholar 

  79. DeVries J, Neill DR, Barr J, Lorenzi SD, Marchiori G (2016) The LSST dome final design. In: Ground-based and airborne telescopes VI. Presented at the ground-based and airborne telescopes VI, international society for optics and photonics, p 99060N. https://doi.org/10.1117/12.2233320

  80. Murga G, Marshall H, Ariño J, Lorentz T (2012) ATST enclosure final design and construction plans. In: Ground-based and airborne telescopes IV. Presented at the ground-based and airborne telescopes IV, international society for optics and photonics, p 844408. https://doi.org/10.1117/12.925987

  81. Teran J, Sheehan M, Neff DH, Korde N, Manuel E, Ortega A (2014) GMT enclosure structure and mechanism design. In: Ground-based and airborne telescopes V. Presented at the ground-based and airborne telescopes V, international society for optics and photonics, p 91454L. https://doi.org/10.1117/12.2055189

  82. Bilbao A, Murga G, Gómez C, Llarena J (2014) Approach to the E-ELT dome and main structure challenges. In: Ground-based and airborne telescopes V. Presented at the ground-based and airborne telescopes V, international society for optics and photonics, p 91452J. https://doi.org/10.1117/12.2054866

  83. Stanghellini S, Martinez P, Kraus M (2018) Procurement of the dome and the telescope structure of the ESO ELT: status report. In: Ground-based and airborne telescopes VII. Presented at the ground-based and airborne telescopes VII, international society for optics and photonics, p 1070009. https://doi.org/10.1117/12.2313510

  84. Thomas-Osip JE, McCarthy P, Prieto G, Phillips MM, Johns M (2010) Giant Magellan Telescope site testing: summary. In: Ground-based and airborne telescopes III. Presented at the ground-based and airborne telescopes III, international society for optics and photonics, p 77331L. https://doi.org/10.1117/12.856934

  85. Teran J, Burgett WS, Grigel E, Bigelow BC, Donoso E, Figueroa F (2016) GMT site, enclosure, and facilities design and development overview and update. In: Ground-based and airborne telescopes VI. Presented at the ground-based and airborne telescopes VI, international society for optics and photonics, p 990610. https://doi.org/10.1117/12.2232573

  86. Teran J, Sanders G, Falcon G, Adriaanse D, Gillett P, Dumas C (2018) Alternate site selection and development for the Thirty Meter Telescope at Observatorio del Roque de los Muchachos, La Palma, Spain. In: Ground-based and airborne telescopes VII. Presented at the ground-based and airborne telescopes VII, international society for optics and photonics, p 1070053. https://doi.org/10.1117/12.2313646

  87. Warner M, Rimmele TR, Pillet VM, Casini R, Berukoff S, Craig SC, Ferayorni A, Goodrich BD, Hubbard RP, Harrington D, Jeffers P, Johansson EM, Kneale R, Kuhn J, Liang C, Lin H, Marshall H, Mathioudakis M, McBride WR, McMullin J, McVeigh W, Sekulic P, Schmidt W, Shimko S, Sueoka S, Summers R, Tritschler A, Williams TR, Wöger F (2018) Construction update of the Daniel K. Inouye Solar Telescope project. In: Ground-based and airborne telescopes VII. Presented at the ground-based and airborne telescopes VII, international society for optics and photonics, p 107000V. https://doi.org/10.1117/12.2314212

Download references

Acknowledgements

We would like to thank Antonin Bouchez for his expert input to the paper’s adaptive and active optics section. Also, this review and summary work was made possible in part by the II–VI Foundation Block-Gift Program, the Technology Research Initiative Fund Optics/Imaging Program, the Korea Basic Science Institute Foundation, and the Friends of Tucson Optics Endowed Scholarships in Optical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae Wook Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graves, L.R., Smith, G.A., Apai, D. et al. Precision Optics Manufacturing and Control for Next-Generation Large Telescopes. Nanomanuf Metrol 2, 65–90 (2019). https://doi.org/10.1007/s41871-019-00038-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41871-019-00038-2

Keywords

Navigation