Skip to main content

Advertisement

Log in

How to Foster Functional Thinking in Learning Environments Using Computer-Based Simulations or Real Materials

  • Published:
Journal for STEM Education Research Aims and scope Submit manuscript

Abstract

As students encounter functional relationships in almost every grade, functional thinking is fundamental for students to participate in mathematics education and sciences successfully. Nevertheless, a lot of students develop misconceptions and face problems working on functional relationships appropriately. Thus, the encouragement of students’ functional thinking seems to be crucial. This study investigates whether the functional thinking of sixth graders should be fostered in a learning environment using real materials or computer-based simulations (GeoGebra). Furthermore, it is analyzed whether the media lead to different effects. A pre-post-test-intervention study (N = 282, two experimental groups: material vs. simulations, control group) was conducted. In the following article the two experimental groups will be focused on. The collected data was analyzed with Item Response Theory. A 2-dimensional Rasch model to determine the person ability with respect to functional thinking was estimated. By the use of plausible values, we conducted a mixed ANOVA. The difference concerning functional thinking between the experimental groups was compared. Even though both media led to a significant increase in functional thinking, the increase of the simulation group was significantly higher. Thus, results indicate that fostering functional thinking with simulations seems to be superior to the use of real materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. German comprehensive Studies in grade 8 in Mathematics and English

  2. This package refers to the D2 statistic. It applies the mean of the F-values and the estimation of the average increase in variance. For Details see Enders 2010.

References

  • Adams, R. J., & Wu, M. (Eds.). (2002). Pisa 2000: Technical Report. Paris: OECD.

    Google Scholar 

  • Artigue, M. (1997). Le logiciel DERIVE comme révélateur de phénomènes didactiques liés à l’utilisation d’environnements informatiques pour l’apprentissage. Educational Studies in Mathematics, 33(2), 133–169.

    Article  Google Scholar 

  • Balacheff, N., & Kaput, J. J. (1997). Computer-based learning environments in mathematics. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education: Part (Vol. 1, pp. 469–501). Dordrecht: Springer.

    Google Scholar 

  • Barzel, B. (2000). Ich bin eine Funktion [I am a function]. Mathematik lehren, 98, 39–40.

    Google Scholar 

  • Blanton, M. L., & Kaput, J. J. (2005). Characterizing a classroom practice that promotes algebraic reasoning. Journal for Research in Mathematics Education, 36(5), 412–446.

    Google Scholar 

  • Blanton, M. L., & Kaput, J. J. (2011). Functional thinking as a route into algebra in the elementary grades. In J. Cai & E. Knuth (Eds.), Early Algebraization. Advances in mathematics education (pp. 5–23). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Blanton, M., Schifter, D., Inge, V., Lofgren, P., Willis, C., Davis, F., & Confrey, J. (2007). Early algebra. In V. J. Katz (Ed.), Algebra. Gateway to a technological future (pp. 7–14). Washington, DC: Mathematical Association of America.

    Google Scholar 

  • Bond, T. G., & Fox, C. M. (2015). Applying the Rasch model: Fundamental measurement in the human sciences (3. Ed.). New York: Routledge, Taylor and Francis Group.

    Book  Google Scholar 

  • Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992). Development of the process conception of function. Educational Studies in Mathematics, 23(3), 247–285.

    Article  Google Scholar 

  • de Beer, H., Gravemeijer, K. P. E., & van Eijk, M. W. (2015). Discrete and continuous reasoning about change in primary school classrooms. ZDM, 47(6), 981–996.

    Article  Google Scholar 

  • de Jong, T. (2005). The guided discovery principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 215–229). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • DeMarois, P., Tall, D. (1999). Function: Organizing Principle or Cognitive Root? In O. Zaslavsky (Hrsg.), Proceedings of the 23rd Conference of the international Group for the Psychology of Mathematics Education, PME XXIII (pp. 257–264). Haifa Israel.

  • DeMars, C. (2010). Item response theory. Series in understanding statistics. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Doorman, M., Drijvers, P., Gravemeijer, K., Boon, P., & Reed, H. (2012). Tool use and the development of the function concept: From repeated calculations to functional thinking. International Journal of Science and Mathematics Education, 10(6), 1243–1267.

    Article  Google Scholar 

  • Drijvers, P., & Gravemeijer, K. (2005). Computer algebra as an instrument: Examples of algebraic schemes. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The Didactical Challenge of Symbolic Calculators. Mathematics education library (Vol. 36). Boston: Springer.

    Google Scholar 

  • Dubinsky, E., & Harel, G. (1992). The nature of the process conception of function. In G. Harel & E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy (pp. 85–106). Washington, DC: Mathematical Association of America.

    Google Scholar 

  • Elschenbroich, H.-J. (2011). Geometrie, Funktionen und dynamische Visualisierung [geometry, functions and dynamical visualization]. In T. Krohn (Ed.), Mathematik für alle. Wege zum Öffnen von Mathematik - mathematikdidaktische Ansätze. Festschrift für Wilfried Herget (pp. 69–84). Franzbecker: Hildesheim.

    Google Scholar 

  • Enders, C. K. (2010). Applied missing data analysis. New York. London: Guilford Press.

    Google Scholar 

  • Field, A., Miles, J., & Field, Z. (2013). Discovering statistics using R (reprint). Los Angeles: Sage.

    Google Scholar 

  • Fischer, G. H., & Seliger, E. (1997). Multidimensional linear logistic models for change. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 323–346). New York: The Guilford Press.

    Chapter  Google Scholar 

  • Ganter, S. (2013). Experimentieren - ein Weg zum funktionalen Denken: Empirische Untersuchung zur Wirkung von Schülerexperimenten [Doing experiments– a way to functional thinking: an empirical study about the effect of students’ experiments]. Didaktik in Forschung und Praxis: Vol. 70. Hamburg: Kovač.

  • Goldstone, R. L., & Son, J. Y. (2005). The transfer of scientific principles using concrete and idealized simulations. The journal of learning sciences, 14(1), 69–110.

    Article  Google Scholar 

  • Hartig, J., Jude, N., & Wagner, W. (2007). Methodische Grundlagen der Messung und Erklärung sprachlicher Kompetenzen [methodological foundations of measuring and interpreting linguistic competencies]. In B. Beck & E. Klime (Eds.), Beltz Pädagogik. Sprachliche Kompetenzen. Konzepte und Messung; DESI-Studie (Deutsch-Englisch-Schülerleistungen-International) (pp. 34–54). Weinheim: Beltz.

    Google Scholar 

  • Hoyles, C., & Noss, R. (2003). What can digital technologies take from and bring to research in mathematics education? In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, F. K, & S. Leung (Eds.), Second international handbook of research in mathematics education (pp. 323–349). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Jaakkola, T., Nurmi, S., & Veermans, K. (2011). Comparison of students’ conceptual understanding of electric circuits in simulation only and simulation-laboratory contexts. Journal of Research in Science Teaching, 48(1), 71–93.

    Article  Google Scholar 

  • Janvier, C. (1978). The interpretation of complex cartesian graphs representing situations – Studies and teaching experiments. Nottingham: University of Nottingham.

    Google Scholar 

  • Kennedy, L. M., Tipps, S., & Johnson, A. (1994). Guiding children’s learning of mathematics (7th ed.). Belmont: Wadsworth.

    Google Scholar 

  • Kiefer, T., Robitzsch, A., Wu, M. (2016). TAM: Test Analysis Modules. Retrieved from https://CRAN.R-project.org/package=TAM.

  • Lagrange, J. B. (2000). L’intégration des instruments informatiques dans l’enseignement: Une approche par les techniques. Educational Studies in Mathematics, 43(1), 1–30.

    Article  Google Scholar 

  • Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of Educational Research, 60(1), 1–64.

    Article  Google Scholar 

  • Little, T. D. (2014). Foundations (paperback). Oxford library of psychology: Vol. 1. Oxford: Oxford Univ. Press.

    Google Scholar 

  • Lichti, M. (2019). Funktionales Denken fördern. Experimentieren mit gegenständlichen Materialien oder Computer-Simulationen [Fostering functional thinking. Doing experiments with real materials or computer-based simulations]. Landauer Beiträge zur mathematikdidaktischen Forschung. Wiesbaden: Springer Spektrum.

  • Mason, J. (2008). Making use of children’s powers to produce algebraic thinking. In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 57–94). New York: Taylor and Francis Group.

  • Merton, R. K. (1968). The Matthew effect in science. Science, 159(3810), 56–63.

    Article  Google Scholar 

  • Mislevy, R. J., Beaton, A. E., Kaplan, B., & Sheehan, K. M. (1992). Estimating population characteristics from sparse matrix samples of item responses. Journal of Educational Measurement, 29(2), 133–161.

    Article  Google Scholar 

  • Mitchell, M. (1993). Situational interest: Its multifaceted structure in the secondary school mathematics classroom. Journal of Educational Psychology, 85(3), 424–436.

    Article  Google Scholar 

  • Moch, P. L. (2001). Manipulatives work. The Educational Forum, 66, 81–87.

    Article  Google Scholar 

  • Monk, G. (1992). Students' understanding of a function given by a physical model. In G. Harel & E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy (pp. 175–194). Washington, DC: Mathematical Association of America.

    Google Scholar 

  • Moyer, P. S., Bolyard, J. J., & Spikell, M. A. (2002). What are virtual manipulatives? Teaching Children Mathematics, 8, 372–377.

    Google Scholar 

  • National Council of Teachers of Mathematics (NCTM) (2000). Principles and Standards for School Mathematics. Reston, VA.

  • National Science Teachers Association (NSTA) (2007). NSTA position statement: The integral role of laboratory investigations in science instruction. National Science Teachers Association.

  • OECD (Organization of Economic and cultural Development). (2014). PISA 2012. Technical Report.

  • Rabardel, P. (2002). People and technology: a cognitive approach to contemporary instruments. University of Paris 8, <hal-01020705>. Retrieved from: https://hal.archives-ouver-tes.fr/hal-01020705/document (October 14, 2018).

  • Reid, D. J., Zhang, J., & Chen, Q. (2003). Supporting scientific discovery learning in a simulation environment. Journal of Computer Assisted Learning, 19(1), 9–20.

    Article  Google Scholar 

  • Robitzsch, A., Kiefer, T., Wu, M. (2018). TAM: Test analysis modules. R package version 2.12–18. Retrieved from: https://CRAN.R-project.org/package=TAM (October 14, 2018.

  • Robitzsch, A., Grund, S., Henke, T. (2017). miceadds: Some additional multiple imputation functions, especially for mice. R package version 2.5–9, Retrieved from:. https://CRAN.R-project.org/package=miceadds (October 14, 2018).

  • Roth, J. (2008). Systematische Variation: Eine Lernumgebung vernetzt Geometrie und Algebra [Systematic variation: A learning environment connects geometry and algebra]. mathematik lehren. (146), 17–21.

  • Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1–36.

    Article  Google Scholar 

  • Sweller, J., Ayres, P., Kalyuga, S. (2011). Cognitive Load Theory. Explorations in the Learning Sciences, Instructional Systems and Performance Technologies Vol. 1., Springer.

  • Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151–169.

    Article  Google Scholar 

  • Thompson, P. W. (1994). Students, functions, and the undergraduate curriculum. In E. Dubinsky (Ed.), Issues in Mathematics Education: Vol. 4. Research in Collegiate Mathematics Education (pp. 21–44). Providence, R.I.: American Mathematical Society.

  • Thompson, P. W., & Carlson, M. (2017). Variation, covariation, and functions: Foundational ways of mathematical thinking. In J. Cai (Ed.), Third handbook of research in mathematics education (pp. 421–456). Reston: National Council of Teachers of Mathematics.

    Google Scholar 

  • van Buuren, S., Groothuis-Oudshoorn, K. (2011). Mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3), 1–67. Retrieved from: http://www.jstatsoft.org/v45/i03/ (October 14, 2018).

  • Verillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to instrumented activity. European Journal of Psychology of Education, 10(1), 77–101.

    Article  Google Scholar 

  • Vinner, S., & Dreyfus, T. (1989). Images and definitions for the concept of function. Journal for Research in Mathematics Education, 20(4), 356–366.

    Article  Google Scholar 

  • Vollrath, H.-J. (1978). Schülerversuche zum Funktionsbegriff [student experiments on the notion of function]. Der Mathematikunterricht, 24(4), 90–101.

    Google Scholar 

  • Vollrath, H.-J. (1986). Search strategies as indicators of functional thinking. Educational Studies in Mathematics, 17, 387–400.

    Article  Google Scholar 

  • Vollrath, H.-J. (1989). Funktionales Denken [Functional thinking]. Journal für Mathematikdidaktik. (10), 3–37.

  • vom Hofe, R. (2004). "Jetzt müssen wir das ding noch stauchen!" Über den manipulierenden und reflektierenden Umgang mit Funktionen [now we have to compress the thing! About the reflecting use of functions]. Der Mathematikunterricht, 50(6), 46–56.

    Google Scholar 

  • vom Hofe, R., & Blum, W. (2016). “Grundvorstellungen” as a category of subject-matter didactics. Journal für Mathematik-Didaktik, 37(S1), 225–254.

    Article  Google Scholar 

  • Vygotsky, L. S. (1930/1985). Die instrumentelle Methode in der Psychologie [The instrumental approach in psychology]. In Ausgewählte Schriften (Bd. 1, pp. 309–317). Berlin: Volk und Wissen.

  • Warren, E., & Cooper, T. (2005). Introducing functional thinking in year 2: A case study of early algebra teaching. Contemporary Issues in Early Childhood, 6(2), 150–162.

    Article  Google Scholar 

  • Warren, E., & Cooper, T. (2006). Using repeating patterns to explore functional thinking. APMC, 11(1), 9–14.

    Google Scholar 

  • Yen, W. M., & Fitzpatrick, A. R. (2006). Item response theory. In R. L. Brennan (Ed.), Educational measurement (4th ed., pp. 111–153). Westport: Praeger.

    Google Scholar 

  • Zumbo, B. D. (1999). A Handbook on the Theory and Methods of Differential Item Functioning (DIF): Logistic Regression Modelling as a Unitary Framework for Binary and Likert-Type (Ordinal) Item Scores. Ottawa: Directorate of Human Resources Research and Evaluation, Department of National Defense.

Download references

Acknowledgments

The authors would like to thank the reviewers for their valuable comments and suggestions. Due to their support, our article improved significantly.

This article is based on Lichti, M. (2019). Funktionales Denken Fördern. Experimentieren mit gegenständlichen Materialien oder Computer-Simulationen, Wiesbaden: Springer Spektrum (DOIhttps://doi.org/10.1007/978-3-658-23621-2). It is adapted and translated by permission from Springer Nature: Funktionales Denken Fördern. Experimentieren mit gegenständlichen Materialien oder Computer-Simulationen, Michaela Lichti, Copyright 2019.

Funding

This research was funded by Deutsche Forschungsgemeinschaft (DFG, Graduiertenkolleg 1561).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela Lichti.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 949 kb)

ESM 2

(PDF 403 kb)

ESM 3

(PDF 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lichti, M., Roth, J. How to Foster Functional Thinking in Learning Environments Using Computer-Based Simulations or Real Materials. Journal for STEM Educ Res 1, 148–172 (2018). https://doi.org/10.1007/s41979-018-0007-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41979-018-0007-1

Keywords

Navigation