Skip to main content
Log in

Flame retardant and hydrophobic cotton fabrics from intumescent coatings

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Intumescent flame retardant and hydrophobic coatings, consisting of sodium montmorillonite (MMT), ammonium dihydrogen phosphate (ADP), and methyltrimethoxysilane (MTMS), were prepared via in situ sol-gel and self-assembly techniques to acquire multifunctional cotton fabrics. The impact of MTMS concentration on hydrophobicity, fire resistance, thermal stability, and heat release behavior of the coated fabrics was investigated. A Si-O-Si network structure was generated via the hydrolysis-condensation reaction of MTMS, induced by the catalysis of ADP. After treated by the coating with 2.0 wt.% of MTMS, the cotton fabric with a total uptake of 22.7 wt.% achieved appreciable flame retardancy and hydrophobicity, as well as satisfactory thermal stability and heat release behaviors. Overall, this research provides a facile and effective approach to prepare flame retardant and hydrophobic cotton fabrics.

Intumescent flame retardant and hydrophobic coatings, consisting of sodium montmorillonite, ammonium dihydrogen phosphate, and methyltrimethoxysilane, were prepared via in situ sol-gel and self-assembly techniques to acquire multifunctional cotton fabrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahrens M (2017) Trends and patterns of U.S. fire loss. National Fire Protection Association (NFPA) report

  2. Horrocks AR (2011) Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions. Polym Degrad Stab 96:377–392

    Article  Google Scholar 

  3. Horrocks AR, Kandola BK, Davies PJ, Zhang S, Padbury SA (2005) Developments in flame retardant textiles—a review. Polym Degrad Stab 88:3–12

    Article  Google Scholar 

  4. Xing W, Jie G, Song L, Hu S, Lv X, Wang X, Hu Y (2011) Flame retardancy and thermal degradation of cotton textiles based on UV-curable flame retardant coatings. Thermochim Acta 513:75–82

    Article  Google Scholar 

  5. Laufer G, Kirkland C, Morgan AB, Grunlan JC (2012) Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton. Biomacromolecules 13:2843–2848

    Article  Google Scholar 

  6. Hu X-P, Li W-Y, Wang Y-Z (2004) Synthesis and characterization of a novel nitrogen-containing flame retardant. J Appl Polym Sci 94:1556–1561

    Article  Google Scholar 

  7. Jiang D, Sun C, Zhou Y, Wang H, Yan X, He Q, Guo J, Guo Z (2015) Enhanced flame retardancy of cotton fabrics with a novel intumescent flame-retardant finishing system. Fibers Polym 16:388–396

    Article  Google Scholar 

  8. Wang C, Wu Y, Li Y, Shao Q, Yan X, Han C, Wang Z, Liu Z, Guo Z Flame-retardant rigid polyurethane foam with a phosphorus-nitrogen single intumescent flame retardant. Polym Adv Technol

  9. Gu H, Guo J, He Q, Tadakamalla S, Zhang X, Yan X, Huang Y, Colorado HA, Wei S, Guo Z (2013) Flame-retardant epoxy resin nanocomposites reinforced with polyaniline-stabilized silica nanoparticles. Ind Eng Chem Res 52:7718–7728

    Article  Google Scholar 

  10. Yuan H, Xing W, Zhang P, Song L, Hu Y (2012) Functionalization of cotton with UV-cured flame retardant coatings. Ind Eng Chem Res 51:5394–5401

    Article  Google Scholar 

  11. Bourbigot S, Jama C, Le Bras M, Delobel R, Dessaux O, Goudmand P (1999) New approach to flame retardancy using plasma assisted surface polymerisation techniques. Polym Degrad Stab 66:153–155

    Article  Google Scholar 

  12. Vargas Garcia JR, Goto T (2003) Thermal barrier coatings produced by chemical vapor deposition. Sci Technol Adv Mater 4:397–402

    Article  Google Scholar 

  13. Chun S-Y, Mizutani N (2001) The transport mechanism of YSZ thin films prepared by MOCVD. Appl Surf Sci 171:82–88

    Article  Google Scholar 

  14. Cai Y, Wu N, Wei Q, Zhang K, Xu Q, Gao W, Song L, Hu Y (2008) Structure, surface morphology, thermal and flammability characterizations of polyamide6/organic-modified Fe-montmorillonite nanocomposite fibers functionalized by sputter coating of silicon. Surf Coat Technol 203:264–270

    Article  Google Scholar 

  15. Alongi J, Malucelli G (2012) State of the art and perspectives on sol-gel derived hybrid architectures for flame retardancy of textiles. J Mater Chem 22:21805–21809

    Article  Google Scholar 

  16. Alongi J, Colleoni C, Malucelli G, Rosace G (2012) Hybrid phosphorus-doped silica architectures derived from a multistep sol–gel process for improving thermal stability and flame retardancy of cotton fabrics. Polym Degrad Stab 97:1334–1344

    Article  Google Scholar 

  17. Li Y-C, Schulz J, Grunlan JC (2009) Polyelectrolyte/nanosilicate thin-film assemblies: influence of pH on growth, mechanical behavior, and flammability. ACS Appl Mater Interfaces 1:2338–2347

    Article  Google Scholar 

  18. Li Y-C, Schulz J, Mannen S, Delhom C, Condon B, Chang S, Zammarano M, Grunlan JC (2010) Flame retardant behavior of polyelectrolyteb clay thin film assemblies on cotton fabric. ACS Nano 4:3325–3337

    Article  Google Scholar 

  19. Carosio F, Alongi J, Malucelli G (2011) α-Zirconium phosphate-based nanoarchitectures on polyester fabrics through layer-by-layer assembly. J Mater Chem 21:10370–10376

    Article  Google Scholar 

  20. Li Y-C, Mannen S, Schulz J, Grunlan JC (2011) Growth and fire protection behavior of POSS-based multilayer thin films. J Mater Chem 21:3060–3069

    Article  Google Scholar 

  21. Alongi J, Carosio F, Malucelli G (2012) Influence of ammonium polyphosphate-/poly(acrylic acid)-based layer by layer architectures on the char formation in cotton, polyester and their blends. Polym Degrad Stab 97:1644–1653

    Article  Google Scholar 

  22. Laufer G, Kirkland C, Cain AA, Grunlan JC (2012) Clay–chitosan nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl Mater Interfaces 4:1643–1649

    Article  Google Scholar 

  23. Li X-M, Reinhoudt D, Crego-Calama M (2007) What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36:1350–1368

    Article  Google Scholar 

  24. Bae GY, Jang J, Jeong YG, Lyoo WS, Min BG (2010) Superhydrophobic PLA fabrics prepared by UV photo-grafting of hydrophobic silica particles possessing vinyl groups. J Colloid Interface Sci 344:584–587

    Article  Google Scholar 

  25. Hsieh C-T, Wu F-L, Chen W-Y (2009) Super water- and oil-repellencies from silica-based nanocoatings. Surf Coat Technol 203:3377–3384

    Article  Google Scholar 

  26. Xue L, Li J, Fu J, Han Y (2009) Super-hydrophobicity of silica nanoparticles modified with vinyl groups. Colloids Surf A Physicochem Eng Asp 338:15–19

    Article  Google Scholar 

  27. Ma W, Zhang D, Duan Y, Wang H (2013) Highly monodisperse polysilsesquioxane spheres: synthesis and application in cotton fabrics. J Colloid Interface Sci 392:194–200

    Article  Google Scholar 

  28. Zhou H, Wang H, Niu H, Gestos A, Wang X, Lin T (2012) Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating. Adv Mater 24:2409–2412

    Article  Google Scholar 

  29. Bae GY, Min BG, Jeong YG, Lee SC, Jang JH, Koo GH (2009) Superhydrophobicity of cotton fabrics treated with silica nanoparticles and water-repellent agent. J Colloid Interface Sci 337:170–175

    Article  Google Scholar 

  30. Xue C-H, Jia S-T, Chen H-Z, Wang M (2008) Superhydrophobic cotton fabrics prepared by sol–gel coating of TiO2 and surface hydrophobization. Sci Technol Adv Mater 9:035001

    Article  Google Scholar 

  31. Vince J, Orel B, Vilčnik A, Fir M, Šurca Vuk A, Jovanovski V, Simončič B (2006) Structural and water-repellent properties of a urea/poly(dimethylsiloxane) sol−gel hybrid and its bonding to cotton fabric. Langmuir 22:6489–6497

    Article  Google Scholar 

  32. Vilčnik A, Jerman I, Šurca Vuk A, Koželj M, Orel B, Tomšič B, Simončič B, Kovač J (2009) Structural properties and antibacterial effects of hydrophobic and oleophobic sol−gel coatings for cotton fabrics. Langmuir 25:5869–5880

    Article  Google Scholar 

  33. Ding F, Liu J, Zeng S, Xia Y, Wells KM, Nieh M-P, Sun L (2017) Biomimetic nanocoatings with exceptional mechanical, barrier, and flame-retardant properties from large-scale one-step coassembly. Sci Adv 3:e1701212

    Article  Google Scholar 

  34. Xiu Y, Hess DW, Wong CP (2008) UV and thermally stable superhydrophobic coatings from sol–gel processing. J Colloid Interface Sci 326:465–470

    Article  Google Scholar 

  35. Iacono ST, Vij A, Grabow W, Smith JDW, Mabry JM (2007) Facile synthesis of hydrophobic fluoroalkyl functionalized silsesquioxane nanostructures. Chem Commun 4992–4994

  36. Dong F, Guo W, Park S-S, Ha C-S (2011) Uniform and monodisperse polysilsesquioxane hollow spheres: synthesis from aqueous solution and use in pollutant removal. J Mater Chem 21:10744–10749

    Article  Google Scholar 

  37. Romeo HE, Fanovich MA, Williams RJJ, Matějka L, Pleštil J, Brus J (2007) Self-assembly of a bridged silsesquioxane containing a pendant hydrophobic chain in the organic bridge. Macromolecules 40:1435–1443

    Article  Google Scholar 

  38. Lee Y-G, Park J-H, Oh C, Oh S-G, Kim YC (2007) Preparation of highly monodispersed hybrid silica spheres using a one-step sol−gel reaction in aqueous solution. Langmuir 23:10875–10878

    Article  Google Scholar 

  39. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  40. Guin T, Krecker M, Milhorn A, Hagen DA, Stevens B, Grunlan JC (2015) Exceptional flame resistance and gas barrier with thick multilayer nanobrick wall thin films. Adv Mater Interfaces 2:1500214

    Article  Google Scholar 

  41. Liu G, Liu X, Yu J (2010) Ammonium polyphosphate with crystalline form V by ammonium dihydrogen phosphate process. Ind Eng Chem Res 49:5523–5529

    Article  Google Scholar 

  42. Abdel-Kader A (1991) Electrical conductivity of ammonium dihydrogen phosphate crystals with regard to crystal structure and thermal analysis. J Mater Sci Mater Electron 2:7–10

    Article  Google Scholar 

  43. Li J, Li B, Zhang X, Su R (2001) The study of flame retardants on thermal degradation and charring process of manchurian ash lignin in the condensed phase. Polym Degrad Stab 72:493–498

    Article  Google Scholar 

  44. Giraud S, Bourbigot S, Rochery M, Vroman I, Tighzert L, Delobel R, Poutch F (2005) Flame retarded polyurea with microencapsulated ammonium phosphate for textile coating. Polym Degrad Stab 88:106–113

    Article  Google Scholar 

Download references

Acknowledgements

This research is sponsored by the National Science Foundation (CMMI-1562907). D.Z. acknowledges the China Scholarship Council for offering him a scholarship (no. 1412080020) to conduct research at University of Connecticut. B.L.W. acknowledges the Giolas-Harriott Fellowship and the National Science Foundation Louis Stokes Alliance for Minority Participation (LSAMP) Bridge to the Doctorate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luyi Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Williams, B.L., Becher, E.M. et al. Flame retardant and hydrophobic cotton fabrics from intumescent coatings. Adv Compos Hybrid Mater 1, 177–184 (2018). https://doi.org/10.1007/s42114-017-0006-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-017-0006-1

Keywords

Navigation