Skip to main content
Log in

A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Composite materials and especially polymer composites are widely used in daily life and different industries due to their vastly different properties and design flexibility. It is known that the properties of the composites are strongly related to the properties of its constituents. However, it has been reported in many studies, experimentally and by simulations, that the characteristics of the composites do not follow the rule of mixing. It means that in addition to properties of the constituents, there are other parameters affecting the final physicochemical properties of composites. The interfacial interactions between fillers and host is one of the factors which can strongly affect the properties of the composite. In this review, we summarized the type of interactions between the constituents, their improvement techniques, interaction measurement methods, and the effects of interfacial interactions on thermal, mechanical, and electrical properties of composites.

The interface of composites especially nanocomposites greatly determines material behavior including but not limited to mechanical, thermal, and electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Henry A (2013) Thermal transport in polymers. Annu Rev Heat Transfer 17:485–520

    Google Scholar 

  2. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R 28(1):1–63

    Google Scholar 

  3. Zhu J, Wilkie CA (2000) Thermal and fire studies on polystyrene–clay nanocomposites. Polym Int 49(10):1158–1163

    CAS  Google Scholar 

  4. Gilman JW (1999) Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci 15(1):31–49

    CAS  Google Scholar 

  5. Heinrich G, Klüppel M, Vilgis TA (2002) Reinforcement of elastomers. Curr Opin Solid State Mater Sci 6(3):195–203

    CAS  Google Scholar 

  6. Huang H, Liu C, Wu Y, Fan S (2005) Aligned carbon nanotube composite films for thermal management. Adv Mater 17(13):1652–1656

    CAS  Google Scholar 

  7. Biercuk M, Llaguno MC, Radosavljevic M, Hyun J, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80(15):2767–2769

    CAS  Google Scholar 

  8. Choi E, Brooks J, Eaton D, Al-Haik M, Hussaini M, Garmestani H, Li D, Dahmen K (2003) Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J Appl Phys 94(9):6034–6039

    CAS  Google Scholar 

  9. Diani J, Fayolle B, Gilormini P (2009) A review on the Mullins effect. Eur Polym J 45(3):601–612

    CAS  Google Scholar 

  10. Mai Y-W, Yu Z-Z (2006) Polymer nanocomposites. Woodhead Publishing, Cambridge

    Google Scholar 

  11. Kropka JM, Putz KW, Pryamitsyn V, Ganesan V, Green PF (2007) Origin of dynamical properties in PMMA–C60 nanocomposites. Macromolecules 40(15):5424–5432

    CAS  Google Scholar 

  12. Sichel EK (1982) Carbon black-polymer composites: the physics of electrically conducting composites. Marcel Dekker Inc, New York

    Google Scholar 

  13. Hamed GR (2000) Reinforcement of rubber. Rubber Chem Technol 73(3):524–533

    CAS  Google Scholar 

  14. Adhikari B, Ghosh AK, Maiti S (2000) Developments in carbon black for rubber reinforcement. J Polym Mater 17(2):101–125

    CAS  Google Scholar 

  15. Hamed G (2007) Rubber reinforcement and its classification. Rubber Chem Technol 80(3):533–544

    CAS  Google Scholar 

  16. Rahmat M, Hubert P (2011) Carbon nanotube–polymer interactions in nanocomposites: a review. Compos Sci Technol 72(1):72–84

    CAS  Google Scholar 

  17. Tang LG, Kardos JL (1997) A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix. Polym Compos 18(1):100–113

    CAS  Google Scholar 

  18. Chen L, Zheng K, Tian X, Hu K, Wang R, Liu C, Li Y, Cui P (2009) Double glass transitions and interfacial immobilized layer in in-situ-synthesized poly (vinyl alcohol)/silica nanocomposites. Macromolecules 43(2):1076–1082

    Google Scholar 

  19. Chen M, Qu H, Zhu J, Luo Z, Khasanov A, Kucknoor AS, Haldolaarachchige N, Young DP, Wei S, Guo Z (2012) Magnetic electrospun fluorescent polyvinylpyrrolidone nanocomposite fibers. Polymer 53(20):4501–4511

    CAS  Google Scholar 

  20. Robertson CG, Roland C (2008) Glass transition and interfacial segmental dynamics in polymer-particle composites. Rubber Chem Technol 81(3):506–522

    CAS  Google Scholar 

  21. Jouault N, Vallat P, Dalmas F, Said S, Jestin J, Boué F (2009) Well-dispersed fractal aggregates as filler in polymer–silica nanocomposites: long-range effects in rheology. Macromolecules 42(6):2031–2040

    CAS  Google Scholar 

  22. Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM (2007) Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat Mater 6(4):278–282

    CAS  Google Scholar 

  23. Qian D (2003) Load transfer mechanism in carbon nanotube ropes. Compos Sci Technol 63(11):1561–1569

    CAS  Google Scholar 

  24. Yu M-F, Yakobson BI, Ruoff RS (2000) Controlled sliding and pullout of nested shells in individual multiwalled carbon nanotubes. J Phys Chem B 104(37):8764–8767

    CAS  Google Scholar 

  25. Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76(20):2868–2870

    CAS  Google Scholar 

  26. Jang BZ (1994) Advanced polymer composites: principles and applications. ASM International, Materials Park, OH 44073-0002, USA, 1994 305

  27. Thostenson ET, Chou T-W (2002) Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J Phys D Appl Phys 35(16):L77

    CAS  Google Scholar 

  28. Crosby AJ, Lee JY (2007) Polymer nanocomposites: the “nano” effect on mechanical properties. Polym Rev 47(2):217–229

    CAS  Google Scholar 

  29. Cadek M, Coleman J, Ryan K, Nicolosi V, Bister G, Fonseca A, Nagy J, Szostak K, Beguin F, Blau W (2004) Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area. Nano Lett 4(2):353–356

    CAS  Google Scholar 

  30. Yang X, Tu Y, Li L, Shang S, X-m T (2010) Well-dispersed chitosan/graphene oxide nanocomposites. ACS Appl Mater Interfaces 2(6):1707–1713

    CAS  Google Scholar 

  31. Tsutsumi N, Takeuchi N, Kiyotsukuri T (1991) Measurement of thermal diffusivity of filler-polymide composites by flash radiometry. J. Polym. Sci., Part B: Polym Phys. 29(9):1085–1093

    CAS  Google Scholar 

  32. Wu H, Drzal LT (2013) High thermally conductive graphite nanoplatelet/polyetherimide composite by precoating: effect of percolation and particle size. Polym Compos 34(12):2148–2153

    CAS  Google Scholar 

  33. Zhou W, Qi S, Tu C, Zhao H, Wang C, Kou J (2007) Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber. J Appl Polym Sci 104(2):1312–1318

    CAS  Google Scholar 

  34. Li T-L, Hsu SL-C (2010) Enhanced thermal conductivity of polyimide films via a hybrid of micro-and nano-sized boron nitride. J Phys Chem B 114(20):6825–6829

    CAS  Google Scholar 

  35. Kemaloglu S, Ozkoc G, Aytac A (2010) Thermally conductive boron nitride/SEBS/EVA ternary composites: “processing and characterization”. Polym Compos 31(8):1398–1408

    CAS  Google Scholar 

  36. Fu J, Shi L, Zhang D, Zhong Q, Chen Y (2010) Effect of nanoparticles on the performance of thermally conductive epoxy adhesives. Polym Eng Sci 50(9):1809–1819

    CAS  Google Scholar 

  37. Pashayi K, Fard HR, Lai F, Iruvanti S, Plawsky J, Borca-Tasciuc T (2012) High thermal conductivity epoxy-silver composites based on self-constructed nanostructured metallic networks. J Appl Phys 111(10):104310

    Google Scholar 

  38. Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85

    CAS  Google Scholar 

  39. Radford K (1971) The mechanical properties of an epoxy resin with a second phase dispersion. J Mater Sci 6(10):1286–1291

    CAS  Google Scholar 

  40. Spanoudakis J, Young R (1984) Crack propagation in a glass particle-filled epoxy resin. J Mater Sci 19(2):473–486

    CAS  Google Scholar 

  41. Ji XL, Jing JK, Jiang W, Jiang BZ (2002) Tensile modulus of polymer nanocomposites. Polym Eng Sci 42(5):983–993

    CAS  Google Scholar 

  42. Mishra S, Sonawane S, Singh R (2005) Studies on characterization of nano CaCO3 prepared by the in situ deposition technique and its application in PP-nano CaCO3 composites. J Polym Sci Part B Polym Phys 43(1):107–113

    CAS  Google Scholar 

  43. Douce J, Boilot J-P, Biteau J, Scodellaro L, Jimenez A (2004) Effect of filler size and surface condition of nano-sized silica particles in polysiloxane coatings. Thin Solid Films 466(1):114–122

    CAS  Google Scholar 

  44. Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B 39(6):933–961

    Google Scholar 

  45. Liao K, Li S (2001) Interfacial characteristics of a carbon nanotube–polystyrene composite system. Appl Phys Lett 79(25):4225–4227

    CAS  Google Scholar 

  46. Suhr J, Koratkar N, Keblinski P, Ajayan P (2005) Viscoelasticity in carbon nanotube composites. Nat Mater 4(2):134–137

    CAS  Google Scholar 

  47. Du M, Guo B, Lei Y, Liu M, Jia D (2008) Carboxylated butadiene–styrene rubber/halloysite nanotube nanocomposites: interfacial interaction and performance. Polymer 49(22):4871–4876

    CAS  Google Scholar 

  48. Lordi V, Yao N (2000) Molecular mechanics of binding in carbon-nanotube–polymer composites. J Mater Res 15(12):2770–2779

    CAS  Google Scholar 

  49. Liu W, Wang Y, Wang P, Li Y, Jiang Q, Hu X, Wei Y, Qiu Y, Shahabadi SIS, Lu X (2017) A biomimetic approach to improve the dispersibility, interfacial interactions and toughening effects of carbon nanofibers in epoxy composites. Composites Part B 113:197–205

    CAS  Google Scholar 

  50. Mu M, Winey KI (2007) Improved load transfer in nanotube/polymer composites with increased polymer molecular weight. J Phys Chem C 111(48):17923–17927

    CAS  Google Scholar 

  51. Gao J, Loi MA, de Carvalho EJF, dos Santos MC (2011) Selective wrapping and supramolecular structures of polyfluorene–carbon nanotube hybrids. ACS Nano 5(5):3993–3999

    CAS  Google Scholar 

  52. Nish A, Hwang J-Y, Doig J, Nicholas RJ (2007) Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat Nanotechnol 2(10):640–646

    CAS  Google Scholar 

  53. Hersam MC (2008) Progress towards monodisperse single-walled carbon nanotubes. Nat Nanotechnol 3(7):387–394

    CAS  Google Scholar 

  54. Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41(11):1853–1859

    CAS  Google Scholar 

  55. McCarthy B, Coleman J, Czerw R, Dalton A, In Het Panhuis M, Maiti A, Drury A, Bernier P, Nagy J, Lahr B (2002) A microscopic and spectroscopic study of interactions between carbon nanotubes and a conjugated polymer. J Phys Chem B 106(9):2210–2216

    CAS  Google Scholar 

  56. Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2(5):338–342

    CAS  Google Scholar 

  57. Tallury SS, Pasquinelli MA (2010) Molecular dynamics simulations of polymers with stiff backbones interacting with single-walled carbon nanotubes. J Phys Chem B 114(29):9349–9355

    CAS  Google Scholar 

  58. Sánchez-Pomales G, Pagán-Miranda C, Santiago-Rodríguez L, Cabrera CR (2010) DNA-wrapped carbon nanotubes: from synthesis to applications. Carbon nanotubes. InTech Education and Publishing, Vukovar, 721–748

    Google Scholar 

  59. Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, Mclean RS, Onoa GB (2003) Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302(5650):1545–1548

    CAS  Google Scholar 

  60. Kusner I, Srebnik S (2006) Conformational behavior of semi-flexible polymers confined to a cylindrical surface. Chem Phys Lett 430(1):84–88

    CAS  Google Scholar 

  61. Xie Y, Soh A (2005) Investigation of non-covalent association of single-walled carbon nanotube with amylose by molecular dynamics simulation. Mater Lett 59(8):971–975

    CAS  Google Scholar 

  62. Gao H, Kong Y (2004) Simulation of DNA-nanotube interactions. Annu Rev Mater Res 34:123–150

    CAS  Google Scholar 

  63. Ma Y, Ali SR, Dodoo AS, He H (2006) Enhanced sensitivity for biosensors: multiple functions of DNA-wrapped single-walled carbon nanotubes in self-doped polyaniline nanocomposites. J Phys Chem B 110(33):16359–16365

    CAS  Google Scholar 

  64. Ning N, Fu S, Zhang W, Chen F, Wang K, Deng H, Zhang Q, Fu Q (2012) Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. Prog Polym Sci 37(10):1425–1455

    CAS  Google Scholar 

  65. Shaffer MS, Fan X, Windle A (1998) Dispersion and packing of carbon nanotubes. Carbon 36(11):1603–1612

    CAS  Google Scholar 

  66. Hamon MA, Chen J, Hu H, Chen Y, Itkis ME, Rao AM, Eklund PC, Haddon RC (1999) Dissolution of single-walled carbon nanotubes. Adv Mater 11(10):834–840

    CAS  Google Scholar 

  67. Bahr JL, Tour JM (2002) Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 12(7):1952–1958

    CAS  Google Scholar 

  68. Zhu J, Kim J, Peng H, Margrave JL, Khabashesku VN, Barrera EV (2003) Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett 3(8):1107–1113

    CAS  Google Scholar 

  69. Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic functionalization of carbon nanotubes. JACS 124(5):760–761

    CAS  Google Scholar 

  70. Eitan A, Jiang K, Dukes D, Andrews R, Schadler LS (2003) Surface modification of multiwalled carbon nanotubes: toward the tailoring of the Interface in polymer composites. Chem Mater 15(16):3198–3201

    CAS  Google Scholar 

  71. Ramanathan T, Abdala A, Stankovich S, Dikin D, Herrera-Alonso M, Piner R, Adamson D, Schniepp H, Chen X, Ruoff R (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331

    CAS  Google Scholar 

  72. Varol HS, Sánchez MA, Lu H, Baio JE, Malm C, Encinas N, Mermet-Guyennet MR, Martzel N, Bonn D, Bonn M (2015) Multiscale effects of interfacial polymer confinement in silica nanocomposites. Macromolecules 48(21):7929–7937

    CAS  Google Scholar 

  73. Roy N, Sengupta R, Bhowmick AK (2012) Modifications of carbon for polymer composites and nanocomposites. Prog Polym Sci 37(6):781–819

    CAS  Google Scholar 

  74. Velasco-Santos C, Martínez-Hernández AL, Fisher FT, Ruoff R, Castaño VM (2003) Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem Mater 15(23):4470–4475

    CAS  Google Scholar 

  75. Koval’chuk AA, Shevchenko VG, Shchegolikhin AN, Nedorezova PM, Klyamkina AN, Aladyshev AM (2008) Effect of carbon nanotube functionalization on the structural and mechanical properties of polypropylene/MWCNT composites. Macromolecules 41(20):7536–7542

    Google Scholar 

  76. Wang X, Kalali EN, Wang D-Y (2015) An in situ polymerization approach for functionalized MoS2/nylon-6 nanocomposites with enhanced mechanical properties and thermal stability. J Mater Chem A 3(47):24112–24120

    CAS  Google Scholar 

  77. Zhu J, Peng H, Rodriguez-Macias F, Margrave JL, Khabashesku VN, Imam AM, Lozano K, Barrera EV (2004) Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv Funct Mater 14(7):643–648

    CAS  Google Scholar 

  78. Moniruzzaman M, Du F, Romero N, Winey KI (2006) Increased flexural modulus and strength in SWNT/epoxy composites by a new fabrication method. Polymer 47(1):293–298

    CAS  Google Scholar 

  79. Salavagione HJ, Martínez G (2011) Importance of covalent linkages in the preparation of effective reduced graphene oxide–poly (vinyl chloride) nanocomposites. Macromolecules 44(8):2685–2692

    CAS  Google Scholar 

  80. Yuan J-M, Fan Z-F, Chen X-H, Chen X-H, Wu Z-J, He L-P (2009) Preparation of polystyrene–multiwalled carbon nanotube composites with individual-dispersed nanotubes and strong interfacial adhesion. Polymer 50(14):3285–3291

    CAS  Google Scholar 

  81. Choi WS, Ryu SH (2010) Enhancement of dispersion of carbon nanotube and physical properties of poly (styrene-co-acrylonitrile)/multiwalled carbon nanotube nanocomposite via surface initiated ATRP. Appl Polym Sci 116(5):2930–2936

    CAS  Google Scholar 

  82. Yang B-X, Shi J-H, Pramoda K, Goh SH (2008) Enhancement of the mechanical properties of polypropylene using polypropylene-grafted multiwalled carbon nanotubes. Compos Sci Technol 68(12):2490–2497

    CAS  Google Scholar 

  83. Karthikeyan A, Coulombe S, Kietzig A (2017) Wetting behavior of multi-walled carbon nanotube nanofluids. Nanotechnology 28(10):105706

    CAS  Google Scholar 

  84. Nuriel S, Liu L, Barber A, Wagner H (2005) Direct measurement of multiwall nanotube surface tension. Chem Phys Lett 404(4):263–266

    CAS  Google Scholar 

  85. Tran MQ, Cabral JT, Shaffer MS, Bismarck A (2008) Direct measurement of the wetting behavior of individual carbon nanotubes by polymer melts: the key to carbon nanotube–polymer composites. Nano Lett 8(9):2744–2750

    CAS  Google Scholar 

  86. Dujardin E, Ebbesen TW, Krishnan A, Treacy MM (1998) Wetting of single shell carbon nanotubes. Adv Mater 10(17):1472–1475

    CAS  Google Scholar 

  87. Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc London 95:65–87

    Google Scholar 

  88. Zisman WA (1964) Relation of the equilibrium contact angle to liquid and solid constitution. Adv Chem Ser. 43:1–51

    CAS  Google Scholar 

  89. Decco O, Zuchuat J, Farkas N (2017) Improvement of Cr-Co-Mo membrane surface used as barrier for bone regeneration through UV photofunctionalization: an in vitro study. Materials 10(7):825

    Google Scholar 

  90. Yuan Y, Lee TR (2013) Contact angle and wetting properties. In: Surface science techniques. Springer, Berlin Heidelberg, 3–34

    Google Scholar 

  91. Qian H, Bismarck A, Greenhalgh ES, Shaffer MS (2010) Carbon nanotube grafted silica fibres: characterising the interface at the single fibre level. Compos Sci Technol 70(2):393–399

    CAS  Google Scholar 

  92. Caroll B (1986) Equilibrium conformation of liquid drops on thin cylinders under forces of capillarity. Langmuir 12:248–250

    Google Scholar 

  93. Neimark AV (1999) Thermodynamic equilibrium and stability of liquid films and droplets on fibers. J Adhes Sci Technol 13(10):1137–1154

    CAS  Google Scholar 

  94. Qian H, Bismarck A, Greenhalgh ES, Shaffer MS (2010) Carbon nanotube grafted carbon fibres: a study of wetting and fibre fragmentation. Composites Part A 41(9):1107–1114

    Google Scholar 

  95. Hoecker F, Karger-Kocsis J (1996) Surface energetics of carbon fibers and its effects on the mechanical performance of CF/EP composites. J Appl Polym Sci 59(1):139–153

    CAS  Google Scholar 

  96. Ghenaim A, Elachari A, Louati M, Caze C (2000) Surface energy analysis of polyester fibers modified by graft fluorination. J Appl Polym Sci 75(1):10–15

    CAS  Google Scholar 

  97. Nishijima H, Kamo S, Akita S, Nakayama Y, Hohmura KI, Yoshimura SH, Takeyasu K (1999) Carbon-nanotube tips for scanning probe microscopy: preparation by a controlled process and observation of deoxyribonucleic acid. Appl Phys Lett 74(26):4061–4063

    CAS  Google Scholar 

  98. Barber AH, Cohen SR, Wagner HD (2004) Static and dynamic wetting measurements of single carbon nanotubes. Phys Rev Lett 92(18):186103

    Google Scholar 

  99. Barber AH, Cohen SR, Wagner HD (2005) External and internal wetting of carbon nanotubes with organic liquids. Phys. Rev. B 71(11):115443

    Google Scholar 

  100. Hiura H, Ebbesen T, Tanigaki K, Takahashi H (1993) Raman studies of carbon nanotubes. Chem Phys Lett 202(6):509–512

    CAS  Google Scholar 

  101. Martínez-Rubí Y, Guan J, Lin S, Scriver C, Sturgeon RE, Simard B (2007) Rapid and controllable covalent functionalization of single-walled carbon nanotubes at room temperature. Chem Commun 48:5146–5148

    Google Scholar 

  102. Nii H, Sumiyama Y, Nakagawa H, Kunishige A (2008) Influence of diameter on the Raman spectra of multi-walled carbon nanotubes. Appl Phys Express 1(6):064005

    Google Scholar 

  103. Hulman M, Pfeiffer R, Kuzmany H (2004) Raman spectroscopy of small-diameter nanotubes. New J Phys 6(1):1

    Google Scholar 

  104. Lefrant S, Buisson J, Schreiber J, Chauvet O, Baibarac M, Baltog I (2004) Raman studies of carbon nanotubes and polymer nanotube composites. Mol Cryst Liq Cryst 415(1):125–132

    CAS  Google Scholar 

  105. Schadler L, Giannaris S, Ajayan P (1998) Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73(26):3842–3844

    CAS  Google Scholar 

  106. Rasheed A, Chae HG, Kumar S, Dadmun MD (2006) Polymer nanotube nanocomposites: correlating intermolecular interaction to ultimate properties. Polymer 47(13):4734–4741

    CAS  Google Scholar 

  107. Baibarac M, Baltog I, Lefrant S (2009) Raman spectroscopic evidence for interfacial interactions in poly (bithiophene)/single-walled carbon nanotube composites. Carbon 47(5):1389–1398

    CAS  Google Scholar 

  108. Ashino M, Schwarz A, Behnke T, Wiesendanger R (2004) Atomic-resolution dynamic force microscopy and spectroscopy of a single-walled carbon nanotube: characterization of interatomic van der Waals forces. Phys Rev Lett 93(13):136101

    Google Scholar 

  109. Bernard C, Marsaudon S, Boisgard R, Aimé J-P (2007) Competition of elastic and adhesive properties of carbon nanotubes anchored to atomic force microscopy tips. Nanotechnology 19(3):035709

    Google Scholar 

  110. Li X, Chen W, Zhan Q, Dai L, Sowards L, Pender M, Naik RR (2006) Direct measurements of interactions between polypeptides and carbon nanotubes. Phys Chem B 110(25):12621

    CAS  Google Scholar 

  111. Barber AH, Cohen SR, Wagner HD (2003) Measurement of carbon nanotube–polymer interfacial strength. Appl Phys Lett 82(23):4140–4142

    CAS  Google Scholar 

  112. Strus M, Zalamea L, Raman A, Pipes R, Nguyen C, Stach E (2008) Peeling force spectroscopy: exposing the adhesive nanomechanics of one-dimensional nanostructures. Nano Lett 8(2):544–550

    CAS  Google Scholar 

  113. Wang W, Ciselli P, Kuznetsov E, Peijs T, Barber A (2008) Effective reinforcement in carbon nanotube–polymer composites. Philos Trans R Soc London Ser A 366(1870):1613–1626

    CAS  Google Scholar 

  114. Barber AH, Cohen SR, Kenig S, Wagner HD (2004) Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix. Compos Sci Technol 64(15):2283–2289

    CAS  Google Scholar 

  115. Barber A, Cohen S, Wagner H (2004) Stepped polymer morphology induced by a carbon nanotube tip. Nano Lett 4(8):1439–1443

    CAS  Google Scholar 

  116. Strus MC, Cano CI, Pipes RB, Nguyen CV, Raman A (2009) Interfacial energy between carbon nanotubes and polymers measured from nanoscale peel tests in the atomic force microscope. Compos Sci Technol 69(10):1580–1586

    CAS  Google Scholar 

  117. Poggi MA, Bottomley LA, Lillehei PT (2004) Measuring the adhesion forces between alkanethiol-modified AFM cantilevers and single walled carbon nanotubes. Nano Lett 4(1):61–64

    CAS  Google Scholar 

  118. Poggi MA, Lillehei PT, Bottomley LA (2005) Chemical force microscopy on single-walled carbon nanotube paper. Chem Mater 17(17):4289–4295

    CAS  Google Scholar 

  119. Friddle RW, Lemieux MC, Cicero G, Artyukhin AB, Tsukruk VV, Grossman JC, Galli G, Noy A (2007) Single functional group interactions with individual carbon nanotubes. Nat Nanotechnol 2(11):692–697

    CAS  Google Scholar 

  120. Rahmat M, Hubert P (2010) Interaction stress measurement using atomic force microscopy: a stepwise discretization method. J Phys Chem C 114(35):15029–15035

    CAS  Google Scholar 

  121. Rahmat M, Das K, Hubert P (2011) Interaction stresses in carbon nanotube-polymer nanocomposites. ACS Appl Mater Interfaces 3(9):3425–3431

    CAS  Google Scholar 

  122. Rahmat M, Ghiasi H, Hubert P (2012) An interaction stress analysis of nanoscale elastic asperity contacts. Nano 4(1):157–166

    CAS  Google Scholar 

  123. Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R 53(3):73–197

    Google Scholar 

  124. Bartczak Z, Argon A, Cohen R, Weinberg M (1999) Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer 40(9):2347–2365

    CAS  Google Scholar 

  125. Misra R, Nerikar P, Bertrand K, Murphy D (2004) Some aspects of surface deformation and fracture of 5–20% calcium carbonate-reinforced polyethylene composites. Mater Sci Eng A 384(1):284–298

    Google Scholar 

  126. Zhu J, Wei S, Alexander MJ, Cocke D, Ho TC, Guo Z (2010) Electrical conductivity manipulation and switching phenomena of poly(p-phenylenebenzobisthiazole) thin film by doping process. J Mater Chem 20:568–574

    CAS  Google Scholar 

  127. Calvert P (1999) Nanotube composites: a recipe for strength. Nature 399(6733):210–211

    CAS  Google Scholar 

  128. Gojny F, Wichmann M, Köpke U, Fiedler B, Schulte K (2004) Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Technol 64(15):2363–2371

    CAS  Google Scholar 

  129. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35(7):837–867

    CAS  Google Scholar 

  130. Ou Y, Yang F, Yu ZZ (1998) A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization. J. Polym. Sci., Part B: Polym Phys 36(5):789–795

    CAS  Google Scholar 

  131. Gong T, Liu M-Q, Liu H, Peng S-P, Li T, Bao R-Y, Yang W, Xie B-H, Yang M-B, Guo Z (2017) Selective distribution and migration of carbon nanotubes enhanced electrical and mechanical performances in polyolefin elastomers. Polymer 110:1–11

    Google Scholar 

  132. Shofner ML, Khabashesku VN, Barrera EV (2006) Processing and mechanical properties of fluorinated single-wall carbon nanotube–polyethylene composites. Chem Mater 18(4):906–913

    CAS  Google Scholar 

  133. Blake R, Coleman JN, Byrne MT, McCarthy JE, Perova TS, Blau WJ, Fonseca A, Nagy JB, Gun'ko YK (2006) Reinforcement of poly (vinyl chloride) and polystyrene using chlorinated polypropylene grafted carbon nanotubes. J Mater Chem 16(43):4206–4213

    CAS  Google Scholar 

  134. Xiao K, Zhang L, Zarudi I (2007) Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites. Compos Sci Technol 67(2):177–182

    CAS  Google Scholar 

  135. Yang BX, Pramoda KP, Xu GQ, Goh SH (2007) Mechanical reinforcement of polyethylene using polyethylene-grafted multiwalled carbon nanotubes. Adv Funct Mater 17(13):2062–2069

    CAS  Google Scholar 

  136. Lee J-Y, Zhang Q, Emrick T, Crosby AJ (2006) Nanoparticle alignment and repulsion during failure of glassy polymer nanocomposites. Macromolecules 39(21):7392–7396

    CAS  Google Scholar 

  137. Hsiao C-C, Lin TS, Cheng LY, Ma C-CM, Yang AC-M (2005) The nanomechanical properties of polystyrene thin films embedded with surface-grafted multiwalled carbon nanotubes. Macromolecules 38(11):4811–4818

    CAS  Google Scholar 

  138. Stafford CM, Guo S, Harrison C, Chiang MY (2005) Combinatorial and high-throughput measurements of the modulus of thin polymer films. Rev Sci Instrum 76(6):062207

    Google Scholar 

  139. Stafford CM, Harrison C, Beers KL, Karim A, Amis EJ, VanLandingham MR, Kim H-C, Volksen W, Miller RD, Simonyi EE (2004) A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat Mater 3(8):545–550

    CAS  Google Scholar 

  140. Stafford CM, Vogt BD, Harrison C, Julthongpiput D, Huang R (2006) Elastic moduli of ultrathin amorphous polymer films. Macromolecules 39(15):5095–5099

    CAS  Google Scholar 

  141. Dekkers M, Heikens D (1983) The effect of interfacial adhesion on the tensile behavior of polystyrene–glass–bead composites. J Appl Polym Sci 28(12):3809–3815

    CAS  Google Scholar 

  142. Fu S-Y, Lauke B (1998) Characterization of tensile behaviour of hybrid short glass fibre/calcite particle/ABS composites. Composites Part A 29(5):575–583

    Google Scholar 

  143. Zhu ZK, Yang Y, Yin J, Qi ZN (1999) Preparation and properties of organosoluble polyimide/silica hybrid materials by sol–gel process. J Appl Polym Sci 73(14):2977–2984

    CAS  Google Scholar 

  144. Zhu J, Mu L, Chen L, Shi Y, Wang H, Feng X, Lu X (2014) Interface-strengthened polyimide/carbon nanofibers nanocomposites with superior mechanical and tribological properties. Macromol Chem Phys 215(14):1407–1414

    CAS  Google Scholar 

  145. Q-l X, X-g T (2015) Atomistic modeling of mechanical characteristics of CNT-polyethylene with interfacial covalent interaction. J Nanomater 237520:1–9

    Google Scholar 

  146. Ramanathan T, Liu H, Brinson L (2005) Functionalized SWNT/polymer nanocomposites for dramatic property improvement. J. Polym Sci Part B Polym Phys. 43(17):2269–2279

    CAS  Google Scholar 

  147. Zhang J, Jia Z, Jia D, Zhang D, Zhang A (2014) Chemical functionalization for improving dispersion and interfacial bonding of halloysite nanotubes in epoxy nanocomposites. High Perform Polym 26(7):734–743

    CAS  Google Scholar 

  148. Thio Y, Argon A, Cohen R (2004) Role of interfacial adhesion strength on toughening polypropylene with rigid particles. Polymer 45(10):3139–3147

    CAS  Google Scholar 

  149. Wu CL, Zhang MQ, Rong MZ, Friedrich K (2005) Silica nanoparticles filled polypropylene: effects of particle surface treatment, matrix ductility and particle species on mechanical performance of the composites. Compos Sci Technol 65(3):635–645

    CAS  Google Scholar 

  150. Frankland S, Caglar A, Brenner D, Griebel M (2002) Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube–polymer interfaces. J Phys Chem B 106(12):3046–3048

    CAS  Google Scholar 

  151. Gao J, Itkis ME, Yu A, Bekyarova E, Zhao B, Haddon RC (2005) Continuous spinning of a single-walled carbon nanotube–nylon composite fiber. JACS 127(11):3847–3854

    CAS  Google Scholar 

  152. An L, Pan Y, Shen X, Lu H, Yang Y (2008) Rod-like attapulgite/polyimide nanocomposites with simultaneously improved strength, toughness, thermal stability and related mechanisms. J Mater Chem 18(41):4928–4941

    CAS  Google Scholar 

  153. Safaei M, Sheidaei A, Baniassadi M, Ahzi S, Mosavi Mashhadi M, Pourboghrat F (2015) An interfacial debonding-induced damage model for graphite nanoplatelet polymer composites. Omput. Mater Sci 96:191–199

    CAS  Google Scholar 

  154. Chen M, Lu Z (2015) A comparative study of the load transfer mechanisms of the carbon nanotube reinforced polymer composites with interfacial crystallization. Composites Part B 79:114–123

    CAS  Google Scholar 

  155. Liff SM, Kumar N, McKinley GH (2007) High-performance elastomeric nanocomposites via solvent-exchange processing. Nat Mater 6(1):76–83

    CAS  Google Scholar 

  156. Wang K, Chen L, Wu J, Toh ML, He C, Yee AF (2005) Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms. Macromolecules 38(3):788–800

    CAS  Google Scholar 

  157. Friedrich K, Fakirov S, Zhang Z (2005) Polymer composites: from nano-to macro-scale. Springer Science & Business Media, New York

    Google Scholar 

  158. Michler GH, Balta-Calleja FJ (2016) Mechanical properties of polymers based on nanostructure and morphology, vol 71. CRC Press, Florida

    Google Scholar 

  159. Moloney A, Kausch H, Kaiser T, Beer H (1987) Parameters determining the strength and toughness of particulate filled epoxide resins. J Mater Sci 22(2):381–393

    CAS  Google Scholar 

  160. Ash BJ, Siegel RW, Schadler LS (2004) Mechanical behavior of alumina/poly (methyl methacrylate) nanocomposites. Macromolecules 37(4):1358–1369

    CAS  Google Scholar 

  161. Johnsen B, Kinloch A, Mohammed R, Taylor A, Sprenger S (2007) Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48(2):530–541

    CAS  Google Scholar 

  162. Sakai M, Miyajima T, Inagaki M (1991) Fracture toughness and fiber bridging of carbon fiber reinforced carbon composites. Compos Sci Technol 40(3):231–250

    Google Scholar 

  163. Boo W, Sun L, Liu J, Clearfield A, Sue H-J, Mullins M, Pham H (2007) Morphology and mechanical behavior of exfoliated epoxy/α-zirconium phosphate nanocomposites. Compos Sci Technol 67(2):262–269

    CAS  Google Scholar 

  164. Moloney A, Kausch H, Stieger H (1984) The fracture of particulate-filled epoxide resins. J Mater Sci 19(4):1125–1130

    CAS  Google Scholar 

  165. Liu T, Tjiu WC, Tong Y, He C, Goh SS, Chung TS (2004) Morphology and fracture behavior of intercalated epoxy/clay nanocomposites. J Appl Polym Sci 94(3):1236–1244

    CAS  Google Scholar 

  166. Zuiderduin W, Huetink J, Gaymans R (2006) Rigid particle toughening of aliphatic polyketone. Polymer 47(16):5880–5887

    CAS  Google Scholar 

  167. Zuiderduin W, Westzaan C, Huetink J, Gaymans R (2003) Toughening of polypropylene with calcium carbonate particles. Polymer 44(1):261–275

    CAS  Google Scholar 

  168. Levita G, Marchetti A, Lazzeri A (1989) Fracture of ultrafine calcium carbonate/polypropylene composites. Polym Compos 10(1):39–43

    CAS  Google Scholar 

  169. Fiedler B, Gojny FH, Wichmann MH, Nolte MC, Schulte K (2006) Fundamental aspects of nano-reinforced composites. Compos Sci Technol 66(16):3115–3125

    CAS  Google Scholar 

  170. Gojny FH, Wichmann MH, Fiedler B, Schulte K (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study. Compos Sci Technol 65(15):2300–2313

    CAS  Google Scholar 

  171. Cao L, Liu X, Na H, Wu Y, Zheng W, Zhu J (2013) How a bio-based epoxy monomer enhanced the properties of diglycidyl ether of bisphenol A (DGEBA)/graphene composites. J Mater Chem A 1(16):5081–5088

    CAS  Google Scholar 

  172. Sahoo NG, Cheng HKF, Cai J, Li L, Chan SH, Zhao J, Yu S (2009) Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods. Mater Chem Phys 117(1):313–320

    CAS  Google Scholar 

  173. Chang C-M, Liu Y-L (2010) Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites. Carbon 48(4):1289–1297

    CAS  Google Scholar 

  174. Shim HC, Kwak YK, Han C-S, Kim S (2009) Enhancement of adhesion between carbon nanotubes and polymer substrates using microwave irradiation. Scr Mater 61(1):32–35

    CAS  Google Scholar 

  175. Buffa F, Abraham GA, Grady BP, Resasco D (2007) Effect of nanotube functionalization on the properties of single-walled carbon nanotube/polyurethane composites. J Polym Sci Part B Polym Phys. 45(4):490–501

    CAS  Google Scholar 

  176. Blake R, Gun'ko YK, Coleman J, Cadek M, Fonseca A, Nagy JB, Blau WJ (2004) A generic organometallic approach toward ultra-strong carbon nanotube polymer composites. JACS 126(33):10226–10227

    CAS  Google Scholar 

  177. Xie L, Xu F, Qiu F, Lu H, Yang Y (2007) Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules 40(9):3296–3305

    CAS  Google Scholar 

  178. Wang F, Drzal LT, Qin Y, Huang Z (2015) Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J Mater Sci 50(3):1082–1093

    CAS  Google Scholar 

  179. Wan Y-J, Tang L-C, Gong L-X, Yan D, Li Y-B, Wu L-B, Jiang J-X, Lai G-Q (2014) Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69:467–480

    CAS  Google Scholar 

  180. Ash BJ, Siegel RW, Schadler LS (2004) Glass-transition temperature behavior of alumina/PMMA nanocomposites. J Polym Sci Part B Polym Phys. 42(23):4371–4383

    CAS  Google Scholar 

  181. Alcoutlabi M, McKenna GB (2005) Effects of confinement on material behaviour at the nanometre size scale. J Phys Condens Matter 17(15):R461

    CAS  Google Scholar 

  182. Napolitano S, Glynos E, Tito NB (2017) Glass transition of polymers in bulk, confined geometries, and near interfaces. Rep Prog Phys 80(3):036602

    Google Scholar 

  183. Fragiadakis D, Pissis P, Bokobza L (2005) Glass transition and molecular dynamics in poly (dimethylsiloxane)/silica nanocomposites. Polymer 46(16):6001–6008

    CAS  Google Scholar 

  184. Bogoslovov R, Roland C, Ellis A, Randall A, Robertson C, Co A, Leal GL, Colby RH, Giacomin AJ (2008) Effect of silica nanoparticles on the local segmental dynamics in polyvinylacetate. AIP Conf Proc 1:1315–1317

    Google Scholar 

  185. Legrand A, Lecomte N, Vidal A, Haidar B, Papirer E (1992) Application of NMR spectroscopy to the characterization of elastomer/filler interactions. J Appl Polym Sci 46(12):2223–2232

    CAS  Google Scholar 

  186. Garcia-Fuentes M, Torres D, Martín-Pastor M, Alonso MJ (2004) Application of NMR spectroscopy to the characterization of PEG-stabilized lipid nanoparticles. Langmuir 20(20):8839–8845

    CAS  Google Scholar 

  187. Dybowski C, Vaughan R (1975) Motional phenomena and multiple pulse nuclear magnetic resonance. Nonisotropic motion in natural rubber. Macromolecules 8(1):50–54

    CAS  Google Scholar 

  188. Schaefer J, Chin SH, Weissman S (1972) Magic-angle carbon-13 nuclear magnetic resonance spectra of filled rubber. Macromolecules 5(6):798–801

    CAS  Google Scholar 

  189. Dutta N, Choudhury NR, Haidar B, Vidal A, Donnet J, Delmotte L, Chezeau J (1994) High resolution solid-state NMR investigation of the filler-rubber interaction: 1. High speed 1H magic-angle spinning NMR spectroscopy in carbon black filled styrene-butadiene rubber. Polymer 35(20):4293–4299

    CAS  Google Scholar 

  190. Litvinov V, Steeman P (1999) EPDM–carbon black interactions and the reinforcement mechanisms, as studied by low-resolution 1H NMR. Macromolecules 32(25):8476–8490

    CAS  Google Scholar 

  191. Kenny J, McBrierty V, Rigbi Z, Douglass D (1991) Carbon black filled natural rubber. I, structural investigations. Macromolecules 24(2):436–443

    CAS  Google Scholar 

  192. O'brien J, Cashell E, Wardell G, McBrierty V (1976) An NMR investigation of the interaction between carbon black and cis-polybutadiene. Macromolecules 9(4):653–660

    CAS  Google Scholar 

  193. Arrighi V, Higgins J, Burgess A, Floudas G (1998) Local dynamics of poly (dimethyl siloxane) in the presence of reinforcing filler particles. Polymer 39(25):6369–6376

    CAS  Google Scholar 

  194. Nakatani A, Ivkov R, Papanek P, Yang H, Gerspacher M (2000) Inelastic neutron scattering from filled elastomers. Rubber Chem Technol 73(5):847–863

    CAS  Google Scholar 

  195. Tsagaropoulos G, Eisenberg A (1995) Dynamic mechanical study of the factors affecting the two glass transition behavior of filled polymers. Similarities and differences with random ionomers. Macromolecules 28(18):6067–6077

    CAS  Google Scholar 

  196. Tsagaropoulos G, Eisenburg A (1995) Direct observation of two glass transitions in silica-filled polymers. Implications to the morphology of random ionomers. Macromolecules 28(1):396–398

    CAS  Google Scholar 

  197. Berriot J, Montes H, Lequeux F, Long D, Sotta P (2002) Evidence for the shift of the glass transition near the particles in silica-filled elastomers. Macromolecules 35(26):9756–9762

    CAS  Google Scholar 

  198. Gauthier C, Reynaud E, Vassoille R, Ladouce-Stelandre L (2004) Analysis of the non-linear viscoelastic behaviour of silica filled styrene butadiene rubber. Polymer 45(8):2761–2771

    CAS  Google Scholar 

  199. Arrighi V, McEwen I, Qian H, Prieto MS (2003) The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofiller. Polymer 44(20):6259–6266

    CAS  Google Scholar 

  200. González-Irún Rodríguez J, Carreira P, García-Diez A, Hui D, Artiaga R, Liz-Marzán L (2007) Nanofiller effect on the glass transition of a polyurethane. J Therm Anal Calorim 87(1):45–47

    Google Scholar 

  201. López-Martínez EI, Márquez-Lucero A, Hernández-Escobar CA, Flores-Gallardo SG, Ibarra-Gómez R, Yacamán MJ, Zaragoza-Contreras EA (2007) Incorporation of silver/carbon nanoparticles into poly (methyl methacrylate) via in situ miniemulsion polymerization and its influence on the glass-transition temperature. J Polym Sci Part B Polym Phys. 45(5):511–518

    Google Scholar 

  202. Bansal A, Yang H, Li C, Benicewicz BC, Kumar SK, Schadler LS (2006) Controlling the thermomechanical properties of polymer nanocomposites by tailoring the polymer–particle interface. J Polym Sci Part B Polym Phys. 44(20):2944–2950

    CAS  Google Scholar 

  203. Kraus G, Gruver J (1970) Thermal expansion, free volume, and molecular mobility in a carbon black-filled elastomer. J Polym Sci Part B Polym Phys. 8(4):571–581

    CAS  Google Scholar 

  204. Rittigstein P, Torkelson JM (2006) Polymer–nanoparticle interfacial interactions in polymer nanocomposites: Confinement effects on glass transition temperature and suppression of physical aging. J Polym Sci Part B Polym Phys. 44(20):2935–2943

    CAS  Google Scholar 

  205. Ou YC, Yu ZZ, Vidal A, Donnet J (1996) Effects of alkylation of silicas on interfacial interaction and molecular motions between silicas and rubbers. J Appl Polym Sci 59(8):1321–1328

    CAS  Google Scholar 

  206. Tian X, Zhang X, Liu W, Zheng J, Ruan C, Cui P (2006) Preparation and properties of poly (ethylene terephthalate)/silica nanocomposites. J Macromol Sci Part B Phys 45(4):507–513

    CAS  Google Scholar 

  207. Huang X, Brittain WJ (2001) Synthesis and characterization of PMMA nanocomposites by suspension and emulsion polymerization. Macromolecules 34(10):3255–3260

    CAS  Google Scholar 

  208. Mackay ME, Dao TT, Tuteja A, Ho DL, Van Horn B, Kim H-C, Hawker CJ (2003) Nanoscale effects leading to non-Einstein-like decrease in viscosity. Nat Mater 2(11):762–766

    CAS  Google Scholar 

  209. Hu L, Jiang P, Zhang P, Bian G, Sheng S, Huang M, Bao Y, Xia J (2016) Amine-graphene oxide/waterborne polyurethane nanocomposites: effects of different amine modifiers on physical properties. J Mater Sci 51(18):8296–8309

    CAS  Google Scholar 

  210. Chang JH, Mun MK, Kim JC (2007) Synthesis and characterization of poly (butylene terephthalate)/mica nanocomposite fibers via in situ interlayer polymerization. J Appl Polym Sci 106(2):1248–1255

    CAS  Google Scholar 

  211. Xu W, Zhou Z, Ge M, Pan W-P (2004) Polyvinyl chloride/montmorillonite nanocomposites. J Therm Anal Calorim 78(1):91–99

    CAS  Google Scholar 

  212. Huskić M, Žigon M (2007) PMMA/MMT nanocomposites prepared by one-step in situ intercalative solution polymerization. Eur Polym J 43(12):4891–4897

    Google Scholar 

  213. Shi X, Gan Z (2007) Preparation and characterization of poly (propylene carbonate)/montmorillonite nanocomposites by solution intercalation. Eur Polym J 43(12):4852–4858

    CAS  Google Scholar 

  214. Sun Y, Luo Y, Jia D (2008) Preparation and properties of natural rubber nanocomposites with solid-state organomodified montmorillonite. J Appl Polym Sci 107(5):2786–2792

    CAS  Google Scholar 

  215. Uthirakumar P, Nahm KS, Hahn YB, Lee Y-S (2004) Preparation of polystyrene/montmorillonite nanocomposites using a new radical initiator-montmorillonite hybrid via in situ intercalative polymerization. Eur Polym J 40(11):2437–2444

    CAS  Google Scholar 

  216. Song SH, Park KH, Kim BH, Choi YW, Jun GH, Lee DJ, Kong BS, Paik KW, Jeon S (2013) Enhanced thermal conductivity of epoxy–graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv Mater 25(5):732–737

    CAS  Google Scholar 

  217. Pham JQ, Mitchell CA, Bahr JL, Tour JM, Krishanamoorti R, Green PF (2003) Glass transition of polymer/single-walled carbon nanotube composite films. J Polym Sci Part B Polym Phys. 41(24):3339–3345

    CAS  Google Scholar 

  218. Bohning M, Goering H, Hao N, Mach R, Oleszak F, Schonhals A (2003) Molecular mobility and gas transport properties of polycarbonate-based nanocomposites. Rev Adv Mater Sci 5(3):155–159

    Google Scholar 

  219. Yuen S-M, Ma C-CM, Lin Y-Y, Kuan H-C (2007) Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite. Compos Sci Technol 67(11):2564–2573

    CAS  Google Scholar 

  220. He L, Wang H, Xia G, Sun J, Song R (2014) Chitosan/graphene oxide nanocomposite films with enhanced interfacial interaction and their electrochemical applications. Appl Surf Sci 314:510–515

    CAS  Google Scholar 

  221. Hatui G, Bhattacharya P, Sahoo S, Dhibar S, Das CK (2014) Combined effect of expanded graphite and multiwall carbon nanotubes on the thermo mechanical, morphological as well as electrical conductivity of in situ bulk polymerized polystyrene composites. Composites Part A 56:181–191

    CAS  Google Scholar 

  222. Salavagione HJ, Gomez MA, Martínez G (2009) Polymeric modification of graphene through esterification of graphite oxide and poly (vinyl alcohol). Macromolecules 42(17):6331–6334

    CAS  Google Scholar 

  223. Bansal A, Yang H, Li C, Cho K, Benicewicz BC, Kumar SK, Schadler LS (2005) Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat Mater 4(9):693–698

    CAS  Google Scholar 

  224. Pandey JK, Reddy KR, Kumar AP, Singh R (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88(2):234–250

    CAS  Google Scholar 

  225. Blumstein A (1965) Polymerization of adsorbed monolayers. II. Thermal degradation of the inserted polymer. J Polym Sci Part A Polym Chem 3(7):2665–2672

    CAS  Google Scholar 

  226. Pielichowski K, Leszczynska A (2006) Polyoxymethylene-based nanocomposites with montmorillonite: an introductory study. Polimery 51(2):143–149

    CAS  Google Scholar 

  227. Cao Y, Lai Z, Feng J, Wu P (2011) Graphene oxide sheets covalently functionalized with block copolymers via click chemistry as reinforcing fillers. J Mater Chem 21(25):9271–9278

    CAS  Google Scholar 

  228. Park S-J, Seo D-I, Lee J-R (2002) Surface modification of montmorillonite on surface acid–base characteristics of clay and thermal stability of epoxy/clay nanocomposites. J Colloid Interface Sci 251(1):160–165

    CAS  Google Scholar 

  229. Kashiwagi T, Grulke E, Hilding J, Groth K, Harris R, Butler K, Shields J, Kharchenko S, Douglas J (2004) Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer 45(12):4227–4239

    CAS  Google Scholar 

  230. Kashiwagi T, Du F, Winey KI, Groth KM, Shields JR, Bellayer SP, Kim H, Douglas JF (2005) Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: effects of nanotube dispersion and concentration. Polymer 46(2):471–481

    CAS  Google Scholar 

  231. Kashiwagi T, Du F, Douglas JF, Winey KI, Harris RH, Shields JR (2005) Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater 4(12):928–933

    CAS  Google Scholar 

  232. Yadav SK, Cho JW (2013) Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Appl Surf Sci 266:360–367

    CAS  Google Scholar 

  233. Zhu J, Uhl FM, Morgan AB, Wilkie CA (2001) Studies on the mechanism by which the formation of nanocomposites enhances thermal stability. Chem Mater 13(12):4649–4654

    CAS  Google Scholar 

  234. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18(10):1518–1525

    CAS  Google Scholar 

  235. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530

    CAS  Google Scholar 

  236. Pettersson S, Mahan G (1990) Theory of the thermal boundary resistance between dissimilar lattices. Phys Rev B 42(12):7386

    CAS  Google Scholar 

  237. He H, Fu R, Shen Y, Han Y, Song X (2007) Preparation and properties of Si3N4/PS composites used for electronic packaging. Compos Sci Technol 67(11):2493–2499

    CAS  Google Scholar 

  238. Norris PM, Le NQ, Baker CH (2013) Tuning phonon transport: from interfaces to nanostructures. J Heat Transfer 135(6):061604

    Google Scholar 

  239. Wang Z, Carter JA, Lagutchev A, Koh YK, Seong N-H, Cahill DG, Dlott DD (2007) Ultrafast flash thermal conductance of molecular chains. Science 317(5839):787–790

    CAS  Google Scholar 

  240. Nan C-W, Liu G, Lin Y, Li M (2004) Interface effect on thermal conductivity of carbon nanotube composites. Appl Phys Lett 85(16):3549–3551

    CAS  Google Scholar 

  241. Hall DE, Moreland JC (2001) Fundamentals of rolling resistance. Rubber Chem Technol 74(3):525–539

    CAS  Google Scholar 

  242. Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR (2003) Nanoscale thermal transport. J Appl Phys 93(2):793–818

    CAS  Google Scholar 

  243. Kapitza P (1941) The study of heat transfer in helium II. Phys Rev 60(4):354

    Google Scholar 

  244. Swartz ET, Pohl RO (1989) Thermal boundary resistance. Rev Mod Phys 61(3):605

    Google Scholar 

  245. Kochetov R, Korobko A, Andritsch T, Morshuis P, Picken S, Smit J (2011) Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix. J Phys D Appl Phys 44(39):395401

    Google Scholar 

  246. Costescu R, Cahill D, Fabreguette F, Sechrist Z, George S (2004) Ultra-low thermal conductivity in W/Al2O3 nanolaminates. Science 303(5660):989–990

    CAS  Google Scholar 

  247. Park JG, Cheng Q, Lu J, Bao J, Li S, Tian Y, Liang Z, Zhang C, Wang B (2012) Thermal conductivity of MWCNT/epoxy composites: the effects of length, alignment and functionalization. Carbon 50(6):2083–2090

    CAS  Google Scholar 

  248. Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17(16):3207–3215

    CAS  Google Scholar 

  249. Deng F, Zheng Q-S, Wang L-F, Nan C-W (2007) Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites. Appl Phys Lett 90(2):021914

    Google Scholar 

  250. Veca LM, Meziani MJ, Wang W, Wang X, Lu F, Zhang P, Lin Y, Fee R, Connell JW, Sun YP (2009) Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv Mater 21(20):2088–2092

    CAS  Google Scholar 

  251. Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog Polym Sci 61:1–28

    CAS  Google Scholar 

  252. Smith DK, Pantoya ML (2015) Effect of nanofiller shape on effective thermal conductivity of fluoropolymer composites. Compos Sci Technol 118:251–256

    CAS  Google Scholar 

  253. Chen L, Sun Y-Y, Xu H-F, He S-J, Wei G-S, Du X-Z, Lin J (2016) Analytic modeling for the anisotropic thermal conductivity of polymer composites containing aligned hexagonal boron nitride. Compos Sci Technol 122:42–49

    Google Scholar 

  254. Prasher R, Evans W, Meakin P, Fish J, Phelan P, Keblinski P (2006) Effect of aggregation on thermal conduction in colloidal nanofluids. Appl Phys Lett 89(14):143119

    Google Scholar 

  255. Tanimoto M, Yamagata T, Miyata K, Ando S (2013) Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: effects of filler particle size, aggregation, orientation, and polymer chain rigidity. ACS Appl Mater Interfaces 5(10):4374–4382

    CAS  Google Scholar 

  256. Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P (2008) Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Transf 51(5):1431–1438

    CAS  Google Scholar 

  257. Hsieh W-P, Lyons AS, Pop E, Keblinski P, Cahill DG (2011) Pressure tuning of the thermal conductance of weak interfaces. Phys Rev B 84(18):184107

    Google Scholar 

  258. Hopkins PE, Phinney LM, Serrano JR, Beechem TE (2010) Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces. In: 2010 14th International Heat Transfer Conference. American Society of Mechanical Engineers, 313–319

  259. Persson B, Volokitin A, Ueba H (2011) Phononic heat transfer across an interface: thermal boundary resistance. J Phys Condens Matter 23(4):045009

    CAS  Google Scholar 

  260. Chu K, W-s L, Dong H (2013) Role of graphene waviness on the thermal conductivity of graphene. Physical review B composites. Appl Phys A Mater Sci Process 111(1):221–225

    CAS  Google Scholar 

  261. Losego MD, Grady ME, Sottos NR, Cahill DG, Braun PV (2012) Effects of chemical bonding on heat transport across interfaces. Nat Mater 11(6):502–506

    CAS  Google Scholar 

  262. Hu L, Zhang L, Hu M, Wang J-S, Li B, Keblinski P (2010) Phonon interference at self-assembled monolayer interfaces: molecular dynamics simulations. Phys Rev B 81(23):235427

    Google Scholar 

  263. Hu M, Keblinski P, Schelling PK (2009) Kapitza conductance of silicon–amorphous polyethylene interfaces by molecular dynamics simulations. Phys Rev B 79(10):104305

    Google Scholar 

  264. Hopkins PE, Baraket M, Barnat EV, Beechem TE, Kearney SP, Duda JC, Robinson JT, Walton SG (2012) Manipulating thermal conductance at metal–graphene contacts via chemical functionalization. Nano Lett 12(2):590–595

    CAS  Google Scholar 

  265. O’Brien PJ, Shenogin S, Liu J, Chow PK, Laurencin D, Mutin PH, Yamaguchi M, Keblinski P, Ramanath G (2013) Bonding-induced thermal conductance enhancement at inorganic heterointerfaces using nanomolecular monolayers. Nat Mater 12(2):118–122

    Google Scholar 

  266. Hung M-T, Choi O, Ju YS, Hahn H (2006) Heat conduction in graphite-nanoplatelet-reinforced polymer nanocomposites. Appl Phys Lett 89(2):023117

    Google Scholar 

  267. Hopkins PE, Norris PM (2007) Effects of joint vibrational states on thermal boundary conductance. Nanoscale Microscale Thermophys Eng 11(3–4):247–257

    CAS  Google Scholar 

  268. Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M (2003) Interfacial heat flow in carbon nanotube suspensions. Nat Mater 2(11):731–734

    CAS  Google Scholar 

  269. Zhou Y, Zhang X, Hu M (2016) An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface. Nano 8(4):1994–2002

    CAS  Google Scholar 

  270. Wang Z, Mu H, Liang J, Tang D (2013) Thermal boundary resistance and temperature dependent phonon conduction in CNT array multilayer structure. Int J Therm Sci 74:53–62

    CAS  Google Scholar 

  271. Nakayama T (1985) New channels of energy transfer across a solid-liquid He interface. J Phys C Solid State Phys 18(22):L667

    CAS  Google Scholar 

  272. Shenogina N, Shenogin S, Xue L, Keblinski P (2005) On the lack of thermal percolation in carbon nanotube composites. Appl Phys Lett 87(13):133106

    Google Scholar 

  273. Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. JACS 123(16):3838–3839

    CAS  Google Scholar 

  274. Simmons TJ, Bult J, Hashim DP, Linhardt RJ, Ajayan PM (2009) Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites. ACS Nano 3(4):865–870

    CAS  Google Scholar 

  275. Teng C-C, Ma C-CM LC-H, Yang S-Y, Lee S-H, Hsiao M-C, Yen M-Y, Chiou K-C, Lee T-M (2011) Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49(15):5107–5116

    CAS  Google Scholar 

  276. Yang S-Y, Lin W-N, Huang Y-L, Tien H-W, Wang J-Y, Ma C-CM, Li S-M, Wang Y-S (2011) Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49(3):793–803

    CAS  Google Scholar 

  277. Kong J, C-y Z, Cheng X (2013) Novel Cu–Cr alloy matrix CNT composites with enhanced thermal conductivity. Appl Phys A Mater Sci Process 112(3):631–636

    CAS  Google Scholar 

  278. Shenogin S, Xue L, Ozisik R, Keblinski P, Cahill DG (2004) Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. J Appl Phys 95(12):8136–8144

    CAS  Google Scholar 

  279. Yang K, Gu M (2009) The effects of triethylenetetramine grafting of multi-walled carbon nanotubes on its dispersion, filler-matrix interfacial interaction and the thermal properties of epoxy nanocomposites. Polym Eng Sci 49(11):2158–2167

    CAS  Google Scholar 

  280. Huang X, Iizuka T, Jiang P, Ohki Y, Tanaka T (2012) Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites. J Phys Chem C 116(25):13629–13639

    CAS  Google Scholar 

  281. Khare KS, Khabaz F, Khare R (2014) Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy–carbon nanotube nanocomposites: role of strengthening the interfacial interactions. ACS Appl Mater Interfaces 6(9):6098–6110

    CAS  Google Scholar 

  282. Shenogin S, Bodapati A, Xue L, Ozisik R, Keblinski P (2004) Effect of chemical functionalization on thermal transport of carbon nanotube composites. Appl Phys Lett 85(12):2229–2231

    CAS  Google Scholar 

  283. W-b Z, Xu X-l, Yang J-h, Huang T, Zhang N, Wang Y, Z-w Z (2015) High thermal conductivity of poly (vinylidene fluoride)/carbon nanotubes nanocomposites achieved by adding polyvinylpyrrolidone. Compos Sci Technol 106:1–8

    Google Scholar 

  284. Lee H-J, Han S-W, Kwon Y-D, Tan L-S, Baek J-B (2008) Functionalization of multi-walled carbon nanotubes with various 4-substituted benzoic acids in mild polyphosphoric acid/phosphorous pentoxide. Carbon 46(14):1850–1859

    CAS  Google Scholar 

  285. Zhou Y, Wang L, Zhang H, Bai Y, Niu Y, Wang H (2012) Enhanced high thermal conductivity and low permittivity of polyimide based composites by core-shell Ag@ SiO2 nanoparticle fillers. Appl Phys Lett 101(1):012903

    Google Scholar 

  286. Huang L, Zhu P, Li G, Lu DD, Sun R, Wong C (2014) Core–shell SiO 2@ RGO hybrids for epoxy composites with low percolation threshold and enhanced thermo-mechanical properties. J Mater Chem A 2(43):18246–18255

    CAS  Google Scholar 

  287. Kim KT, Dao TD, Jeong HM, Anjanapura RV, Aminabhavi TM (2015) Graphene coated with alumina and its utilization as a thermal conductivity enhancer for alumina sphere/thermoplastic polyurethane composite. Mater Chem Phys 153:291–300

    CAS  Google Scholar 

  288. Gulotty R, Castellino M, Jagdale P, Tagliaferro A, Balandin AA (2013) Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube–polymer nanocomposites. ACS Nano 7(6):5114–5121

    CAS  Google Scholar 

  289. Kim G-H, Lee D, Shanker A, Shao L, Kwon MS, Gidley D, Kim J, Pipe KP (2015) High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat Mater 14(3):295

    CAS  Google Scholar 

  290. Mu L, Li Y, Mehra N, Ji T, Zhu J (2017) Expedited phonon transfer in interfacially constrained polymer chain along self-organized amino acid crystals. ACS Appl Mater Interfaces 9(13):12138–12145

    CAS  Google Scholar 

  291. Mu L, Ji T, Chen L, Mehra N, Shi Y, Zhu J (2016) Paving the thermal highway with self-organized nanocrystals in transparent polymer composites. ACS Appl Mater Interfaces 8(42):29080–29087

    CAS  Google Scholar 

  292. Mu L, He J, Li Y, Ji T, Mehra N, Shi Y, Zhu J (2017) The molecular origin of efficient phonon transfer in modulated polymer blends: effect of hydrogen bonding on polymer coil size and assembled microstructure. J Phys Chem C 121(26):14204–14212

    CAS  Google Scholar 

  293. Mehra N, Mu L, Ji T, Li Y, Zhu J (2017) Moisture driven thermal conduction in polymer and polymer blends. Compos Sci Technol 151:115–123

    CAS  Google Scholar 

  294. Mehra N, Mu L, Zhu J (2017) Developing heat conduction pathways through short polymer chains in a hydrogen bonded polymer system. Compos Sci Technol 148:97–105

    CAS  Google Scholar 

  295. Yu W, Fu J, Chen L, Zong P, Yin J, Shang D, Lu Q, Chen H, Shi L (2016) Enhanced thermal conductive property of epoxy composites by low mass fraction of organic–inorganic multilayer covalently grafted carbon nanotubes. Compos Sci Technol 125:90–99

    CAS  Google Scholar 

  296. Yan H, Tang Y, Su J, Yang X (2014) Enhanced thermal–mechanical properties of polymer composites with hybrid boron nitride nanofillers. Appl Phys A Mater Sci Process 114(2):331–337

    CAS  Google Scholar 

  297. Kim G, Ryu SH, Lee J-T, Seong K-H, Lee JE, Yoon P-J, Kim B-S, Hussain M, Choa Y-H (2013) Enhancement of thermal conductive pathway of boron nitride coated polymethylsilsesquioxane composite. J Nanosci Nanotechnol 13(11):7695–7700

    CAS  Google Scholar 

  298. Wong C, Bollampally RS (1999) Comparative study of thermally conductive fillers for use in liquid encapsulants for electronic packaging. IEEE Trans Adv Packag 22(1):54–59

    CAS  Google Scholar 

  299. Qian R, Yu J, Wu C, Zhai X, Jiang P (2013) Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity. RSC Adv 3(38):17373–17379

    CAS  Google Scholar 

  300. Sun R, Yao H, Zhang H-B, Li Y, Mai Y-W, Yu Z-Z (2016) Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites. Compos Sci Technol 137:16–23

    CAS  Google Scholar 

  301. Gu J, Xie C, Li H, Dang J, Geng W, Zhang Q (2014) Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites. Polym Compos 35(6):1087–1092

    CAS  Google Scholar 

  302. Dai W, Yu J, Liu Z, Wang Y, Song Y, Lyu J, Bai H, Nishimura K, Jiang N (2015) Enhanced thermal conductivity and retained electrical insulation for polyimide composites with SiC nanowires grown on graphene hybrid fillers. Composites Part A 76:73–81

    CAS  Google Scholar 

  303. Chen J, Chen X, Meng F, Li D, Tian X, Wang Z, Zhou Z (2017) Super-high thermal conductivity of polyamide-6/graphene-graphene oxide composites through in situ polymerization. High Perform Polym 29(5):585–594

    CAS  Google Scholar 

  304. Zong P, Fu J, Chen L, Yin J, Dong X, Yuan S, Shi L, Deng W (2016) Effect of aminopropylisobutyl polyhedral oligomeric silsesquioxane functionalized graphene on the thermal conductivity and electrical insulation properties of epoxy composites. RSC Adv 6(13):10498–10506

    CAS  Google Scholar 

  305. Ma W-S, Wu L, Yang F, Wang S-F (2014) Non-covalently modified reduced graphene oxide/polyurethane nanocomposites with good mechanical and thermal properties. J Mater Sci 49(2):562–571

    CAS  Google Scholar 

  306. Cho E-C, Huang J-H, Li C-P, Chang-Jian C-W, Lee K-C, Hsiao Y-S, Huang J-H (2016) Graphene-based thermoplastic composites and their application for LED thermal management. Carbon 102:66–73

    CAS  Google Scholar 

  307. Gojny FH, Wichmann MH, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47(6):2036–2045

    CAS  Google Scholar 

  308. Lee SH, Cho E, Jeon SH, Youn JR (2007) Rheological and electrical properties of polypropylene composites containing functionalized multi-walled carbon nanotubes and compatibilizers. Carbon 45(14):2810–2822

    CAS  Google Scholar 

  309. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375

    CAS  Google Scholar 

  310. Zhu J, Chen M, He Q, Shao L, Wei S, Guo Z (2013) An overview of the engineered graphene nanostructures and nanocomposites. RSC Adv 3(45):22790–22824

    CAS  Google Scholar 

  311. Zhu J, Wei S, Ryu J, Sun L, Luo Z, Guo Z (2010) Magnetic epoxy resin nanocomposites reinforced with core-shell structured Fe@FeO nanoparticles: fabrication and property analysis. ACS Appl Mater Interfaces 2(7):2100–2107

    CAS  Google Scholar 

  312. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205

    CAS  Google Scholar 

  313. Zhu J, Wei S, Ryu J, Budhathoki M, Liang G, Guo Z (2010) In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J Mater Chem 20:4937–4948

    CAS  Google Scholar 

  314. Zhu J, Wei S, Yadav A, Guo Z (2010) Rheological behaviors and electrical conductivity of epoxy resin nanocomposites suspended with in-situ stabilized carbon nanofibers. Polymer 51(12):2643–2651

    CAS  Google Scholar 

  315. Zhu J, Wei S, Li Y, Sun L, Haldolaarachchige N, Young DP, Southworth C, Khasanov A, Luo Z, Guo Z (2011) Surfactant-free synthesized magnetic polypropylene nanocomposites: rheological, electrical, magnetic, and thermal properties. Macromolecules 44(11):4382–4391

    CAS  Google Scholar 

  316. Hu N, Fukunaga H, Atobe S, Liu Y, Li J (2011) Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 11(11):10691–10723

    Google Scholar 

  317. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    CAS  Google Scholar 

  318. Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Very low conductivity threshold in bulk isotropic single-walled carbon nanotube–epoxy composites. Adv Mater 17(9):1186–1191

    CAS  Google Scholar 

  319. Mamunya YP, Davydenko V, Pissis P, Lebedev E (2002) Electrical and thermal conductivity of polymers filled with metal powders. Eur Polym J 38(9):1887–1897

    CAS  Google Scholar 

  320. Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43(7):1378–1385

    CAS  Google Scholar 

  321. Barrau S, Demont P, Perez E, Peigney A, Laurent C, Lacabanne C (2003) Effect of palmitic acid on the electrical conductivity of carbon nanotubes–epoxy resin composites. Macromolecules 36(26):9678–9680

    CAS  Google Scholar 

  322. Sandler J, Kirk J, Kinloch I, Shaffer M, Windle A (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19):5893–5899

    CAS  Google Scholar 

  323. Du F, Fischer JE, Winey KI (2005) Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys Rev B 72(12):121404

    Google Scholar 

  324. Sandler J, Kirk J, Kinloch I, Shaffer M, Windle A (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19):5893–5899

    CAS  Google Scholar 

  325. Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Adv Mater 20(24):4740–4744

    CAS  Google Scholar 

  326. Sadasivuni KK, Ponnamma D, Kim J, Thomas S (2015) Graphene-based polymer nanocomposites in electronics. Springer International Publishing, New York

    Google Scholar 

  327. Stankovich S, Piner RD, Nguyen ST, Ruoff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44(15):3342–3347

    CAS  Google Scholar 

  328. Ramasubramaniam R, Chen J, Liu H (2003) Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 83(14):2928–2930

    CAS  Google Scholar 

  329. Ma L-F, Bao R-Y, Dou R, Zheng S-D, Liu Z-Y, Zhang R-Y, Yang M-B, Yang W (2016) Conductive thermoplastic vulcanizates (TPVs) based on polypropylene (PP)/ethylene-propylene-diene rubber (EPDM) blend: from strain sensor to highly stretchable conductor. Compos Sci Technol 128:176–184

    CAS  Google Scholar 

  330. Du F-P, Tang H, Huang D-Y (2013) Thermal conductivity of epoxy resin reinforced with magnesium oxide coated multiwalled carbon nanotubes. Int J Polym Sci 541823:1–5

    Google Scholar 

  331. Karim MR, Lee CJ, Chowdhury AS, Nahar N, Lee MS (2007) Radiolytic synthesis of conducting polypyrrole/carbon nanotube composites. Mater Lett 61(8):1688–1692

    Google Scholar 

  332. Dang ZM, Wang L, Yin Y, Zhang Q, Lei QQ (2007) Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv Mater 19(6):852–857

    CAS  Google Scholar 

  333. Kwon JY, Kim HD (2005) Preparation and properties of acid-treated multiwalled carbon nanotube/waterborne polyurethane nanocomposites. J Appl Polym Sci 96(2):595–604

    CAS  Google Scholar 

  334. Kim H-S, Park BH, Yoon J-S, Jin H-J (2007) Nylon 610/functionalized multiwalled carbon nanotubes composites by in situ interfacial polymerization. Mater Lett 61(11):2251–2254

    CAS  Google Scholar 

  335. Karim MR, Lee CJ, Lee MS (2006) Synthesis and characterization of conducting polythiophene/carbon nanotubes composites. J Polym Sci Part A Polym Chem. 44(18):5283–5290

    CAS  Google Scholar 

  336. Kuila BK, Malik S, Batabyal SK, Nandi AK (2007) In-situ synthesis of soluble poly (3-hexylthiophene)/multiwalled carbon nanotube composite: morphology, structure, and conductivity. Macromolecules 40(2):278–287

    CAS  Google Scholar 

  337. Long Y, Chen Z, Zhang X, Zhang J, Liu Z (2004) Synthesis and electrical properties of carbon nanotube polyaniline composites. Ppl Phys Lett 85(10):1796–1798

    CAS  Google Scholar 

  338. Chen J, Ramasubramaniam R, Xue C, Liu H (2006) A versatile, molecular engineering approach to simultaneously enhanced, multifunctional carbon-nanotube–polymer composites. Adv Funct Mater 16(1):114–119

    CAS  Google Scholar 

  339. Kim KH, Jo WH (2009) A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Carbon 47(4):1126–1134

    CAS  Google Scholar 

Download references

Acknowledgements

Acknowledgement is made to the donors of the American Chemical Society Petroleum Research Fund (#55570-DNI10) and NSF (CBET-1603264).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahua Zhu.

Ethics declarations

Conflict of interest statement

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashfipour, M.A., Mehra, N. & Zhu, J. A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Adv Compos Hybrid Mater 1, 415–439 (2018). https://doi.org/10.1007/s42114-018-0022-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-018-0022-9

Keywords

Navigation