Skip to main content
Log in

Composite metamaterial with sign-switchable coefficients of hygroscopic, thermal and pressure expansions

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

This paper proposes a truss microstructure that exhibits negative properties during increase in temperature or moisture and decrease in pressure but reverses to conventional properties during decrease in temperature or moisture and increase in pressure so that the material contracts regardless of the direction by which the environment condition changes. Both primary and secondary cells are bounded by 4 side rods to form squares at original state, with each primary cell containing a central rod connected diagonally. Sign-switchability of material properties is observed when the central rod is more responsive than the side rods during environmental fluctuations. The proposed microstructure exhibits zero environmental expansion when the environmental change is insignificant, and can be further designed to exhibit zero environmental expansion for large change in environmental fluctuation.

This metamaterial exhibits expansion coefficients that switch between positive and negative values such that it always contracts with environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Deng J, Zheng B, Fan S, Wang X, Zhang L, Cheng L (2018) Influence of thermal shock and environment temperature on mechanical properties of C/SiC/GH783 joint brazed with Cu-Ti + Mo. Adv Compos Hybrid Mater 1(1):199–205

    CAS  Google Scholar 

  2. Yang X, Liang C, Ma T, Guo Y, Kong J, Gu J, Chen M, Zhu J (2018) A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv Compos Hybrid Mater 1(2):207–230

    Google Scholar 

  3. Dhanumalayan E, Joshi GM (2018) Performance properties and applications of polytetrafluoroethylene (PTFE)—a review. Adv Compos Hybrid Mater 1(2):247–268

    CAS  Google Scholar 

  4. Kashfipour MA, Mehra N, Zhu J (2018) A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Adv Compos Hybrid Mater 1(3):415–439

    Google Scholar 

  5. Fan X, Yin X (2018) Progress in research and development on matrix modification of continuous fiber-reinforced silicon carbide matrix composites. Adv Compos Hybrid Mater 1(4):685–695

    CAS  Google Scholar 

  6. Suresh S, Gowd GH, Kumar MLSD (2018) Wear behaviour of Al 7075/SiC/Mg metal matrix nano composite by liquid state process. Adv Compos Hybrid Mater 1(4):819–825

    CAS  Google Scholar 

  7. Suresh S, Gowd GH, Kumar MLSD (2019) Mechanical and wear behavior of Al 7075/Al2O3/SiC/mg metal matrix nanocomposite by liquid state process. Adv Compos Hybrid Mater (in press)

  8. Gopinath R, Poopathi R, Saravanakumar SS (2019) Characterization and structural performance of hybrid fiber-reinforced composite deck panels. Adv Compos Hybrid Mater 2(1):115–124

    CAS  Google Scholar 

  9. Qin Y, Yu Q, Yin X, Zhiou Y, Xu J, Wang L, Wang H, Chen Z (2019) Photo-polymerized trifunctional acrylate resin/magnesium hydroxide fluids/cotton fabric composites with enhancing mechanical and moisture barrier properties. Adv Compos Hybrid Mater 2(2):320–329

    CAS  Google Scholar 

  10. Uddin MN, Gandy HTN, Rahman MM, Asmatulu R (2019) Adhesiveless honeycomb sandwich structures of prepreg carbon fiber composites for primary structural applications. Adv Compos Hybrid Mater 2(2):339–350

    CAS  Google Scholar 

  11. Song X, Sun Z, Huang Q, Rettenmayr M, Liu X, Seyring M, Li G, Rao G, Yin F (2011) Adjustable zero thermal expansion in antiperovskite manganese nitride. Adv Mater 23(40):4690–4694

    CAS  Google Scholar 

  12. Ren Z, Zhao R, Chen X, Li M, Li X, Tian H, Zhang Z, Han G (2018) Mesopores induced zero thermal expansion in single-crystal ferroelectrics. Nat Commun 9:1638

    Google Scholar 

  13. Chen J, Xing X, Sun C, Hu P, Yu R, Wang X, Li L (2008) Zero thermal expansion in PbTiO3-based perovskites. J Am Chem Soc 130(4):1144–1145

    CAS  Google Scholar 

  14. Xie YM, Yang X, Shen J, Yan X, Ghaedizadeh A, Rong J, Huang X, Zhou S (2014) Designing orthotropic materials for negative or zero compressibility. Int J Solids Struct 51(23–24):4038–4051

    Google Scholar 

  15. Jiang X, Yang Y, Molokeev MS, Gong P, Liang F, Wang S, Liu L, Wu X, Li X, Li Y, Wu S, Li W, Wu Y, Lin Z (2018) Zero linear compressibility in nondense borates with a “Lu-Ban stool”-like structure. Adv Mater 30(32):1801313

    Google Scholar 

  16. Zeng Q, Wang K, Zou B (2018) Near zero area compressibility in a perovskite-like metal–organic frameworks [C(NH2)3][Cd(HCOO)3]. ACS Appl Mater Interfaces 10(28):23481–23484

    CAS  Google Scholar 

  17. Maahs HG, Vaughn WL, Kowbel W (1993) Four advances in carbon-carbon materials technology. In: Technology 2003: The Fourth National Technology Transfer Conference and Exposition, Anaheim, California. 1: 361–370

  18. Wangler T, Sanchez AA, Peri T (2016) Rapid degradation of stylolitic limestones used in building cladding panels. In: Proceedings of the 13th International Congress on the Deterioration and Conservation of Stone, Paisley, Scotland. 1: 181–188

  19. Helwig G (1994) Highly dimensional stable composite structures. In: Proceedings of the International Workshop on Advanced Materials for High Precision Detectors, Haute-Savoie, France. 33–38

  20. Lim TC (2005) Anisotropic and negative thermal expansion behavior in a cellular microstructure. J Mater Sci 40:3275–3277

    CAS  Google Scholar 

  21. Miller W, Smith CW, MacKenzie DS, Evans KE (2009) Negative thermal expansion: a review. J Mater Sci 44:5441–5451

    CAS  Google Scholar 

  22. Lim TC (2012) Negative thermal expansion structures constructed from positive thermal expansion trusses. J Mater Sci 47:368–373

    CAS  Google Scholar 

  23. Ng CK, Saxena KK, Das R, Flores EIS (2017) On the anisotropic and negative thermal expansion from dual-material re-entrant-type cellular metamaterials. J Mater Sci 52:8999–8912

    Google Scholar 

  24. Ai L, Gao XL (2017) Metamaterials with negative Poisson’s ratio and non-positive thermal expansion. Compos Struct 162:70–84

    Google Scholar 

  25. Lim TC (2017) Auxetic and negative thermal expansion structure based on interconnected array of rings and sliding rods. Phys Status Solidi B 254:1600775

    Google Scholar 

  26. Wei K, Peng Y, Wang K, Duan S, Yang X, Wen W (2018) Three dimensional lightweight lattice structures with large positive, zero and negative thermal expansion. Compos Struct 188:287–296

    Google Scholar 

  27. Li Y, Chen Y, Li T, Cao S, Wang L (2018) Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion. Compos Struct 189:586–597

    Google Scholar 

  28. Oddone V, Wimpory RC, Reich S (2019) Understanding the negative thermal expansion in planar graphite-metal composites. J Mater Sci 54:1267–1274

    CAS  Google Scholar 

  29. Gatt R, Caruana-Gauci R, Grima JN (2013) Negative linear compressibility: giant response. Nat Mater 12:182–183

    CAS  Google Scholar 

  30. Magos-Palasyuk E, Fijalkowski KJ, Palasyuk T (2016) Chemically driven negative linear compressibility in sodium amidoborane, Na(NH2BH3). Sci Rep 6:28745

    CAS  Google Scholar 

  31. Lim TC (2017) 2D structures exhibiting negative area compressibility. Phys Status Solidi B 254:1600682

    Google Scholar 

  32. Caruana-Gauci R, Degabriele EP, Attard D, Grima JN (2018) Auxetic metamaterials inspired from wine-rack. J Mater Sci 53:5079–5091

    CAS  Google Scholar 

  33. Feng G, Zhang WX, Dong L, Li W, Cai W, Wei W, Ji L, Lin Z, Lu P (2019) Negative area compressibility of a hydrogen-bonded two-dimensional material. Chem Sci 10:1309–1315

    CAS  Google Scholar 

  34. Degabriele EP, Attard D, Grima-Cornish JN, Caruana-Gauci R, Gatt R, Evans KE, Grima JN (2019) On the compressibility properties of the wine-rack-like carbon allotropes and related poly(phenylacetylene) systems. Phys Status Solidi B 256:1800572

    Google Scholar 

  35. Lim TC (2017) Negative moisture expansion. Auxetics 2017 Book of Abstracts, 33

  36. Lim TC (2018) A negative hygroscopic expansion material. Mater Sci Forum 928:277–282

    Google Scholar 

  37. Lim TC (2019) A reinforced kite-shaped microstructure with negative linear and area hygrothermal expansions. Key Eng Mater 803:272–277

    Google Scholar 

  38. Lim TC (2019) Negative environmental expansion for interconnected array of rings and sliding rods. Phys Status Solidi B 256:1800032

    Google Scholar 

  39. Xie P, Zhang Z, Wang Z, Sun K, Fan R (2019) Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures. Research 2019:1021368

    Google Scholar 

  40. Cui TJ, Liu S, Bai GD, Ma Q (2019) Direct transmission of digital message via programmable coding metasurface. Research 2019:2584509

    Google Scholar 

  41. Wen Y, Zhou J (2019) Artificial generation of high harmonics via nonrelativistic Thomson scattering in metamaterial. Research 2019:8959285

    Google Scholar 

  42. Luo Y, Estevez D, Scarpa F, Panina L, Wang H, Qin F, Peng HX (2019) Microwave properties of metacomposites containing carbon fibres and ferromagnetic microwires. Research 2019:3239879

    Google Scholar 

  43. Cheng C, Fan R, Fan G, Liu H, Zhang J, Shen J, Ma Q, Wei R, Guo Z (2019) Tunable negative permittivity and magnetic performance of yttrium iron garnet/polypyrrole metacomposites at the RF frequency. J Mater Chem C 7(11):3160–3167

    CAS  Google Scholar 

  44. Sun X, Shen J, Cheng C, Wang T, Liu Y, Fan R (2019) Negative permittivity behavior in percolative molybdenum/alumina composites. Ceram Int 45(13):16618–16624

    CAS  Google Scholar 

  45. Qu P, Du Y, Fan G, Xin J, Liu Y, Xie P, You S, Zhang Z, Sun K, Fan R (2019) Low-temperature sintering graphene/CaCu3Ti4O12 nanocomposites with tunable negative permittivity. J Alloys Compd 771:699–710

    CAS  Google Scholar 

  46. Xie P, Sun W, Liu Y, Du A, Zhang Z, Wu G, Fan R (2018) Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon 129:598–606

    CAS  Google Scholar 

  47. Lim TC (2019) Composite microstructures with Poisson’s ratio sign switching upon stress reversal. Compos Struct 209:34–44

    Google Scholar 

  48. Lim TC (2019) Metamaterials with Poisson’s ratio sign toggling by means of microstructural duality. SN Appl Sci 1:176

    Google Scholar 

  49. Lim TC (2019) A composite metamaterial with sign switchable elastic and hygrothermal properties induced by stress direction and environmental change reversals. Compos Struct 220:185–193

    Google Scholar 

  50. Lim TC (2019) A class of shape-shifting composite metamaterial honeycomb structures with thermally-adaptive Poisson’s ratio signs. Compos Struct 226:111256

    Google Scholar 

  51. Grima JN, Evans KE (2000) Auxetic behavior from rotating squares. J Mater Sci Lett 19:1563–1565

    CAS  Google Scholar 

  52. Lim TC (2015) Auxetic materials and structures, Springer, Singapore, 2015

  53. Adamson MJ (1980) Thermal expansion and swelling of cured epoxy resin used in graphite/epoxy composite materials. J Mater Sci 15(7):1736–1745

    CAS  Google Scholar 

  54. Cairns DS, Adams DF (1983) Moisture and thermal expansion properties of unidirectional composite materials and the epoxy matrix. J Reinf Plast Compos 2(4):239–255

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teik-Cheng Lim.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, TC. Composite metamaterial with sign-switchable coefficients of hygroscopic, thermal and pressure expansions. Adv Compos Hybrid Mater 2, 657–669 (2019). https://doi.org/10.1007/s42114-019-00118-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-019-00118-3

Keywords

Navigation