Skip to main content
Log in

Inverse Displacement Analysis of a Hyper-redundant Elephant’s Trunk Robot

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

This paper deals with inverse displacement analysis of a Hyper-redundant Elephant’s Trunk Robot (HRETR). The HRETR is connected in series with n modules of 3UPS-PRU parallel mechanism where the underline P denotes an active prismatic joint. Based on the idea of differential geometry, backbone curve of the robot is formulated by using a parametric function consisting of sub-functions and control parameters. A general algorithm for generating a backbone curve and fitting the modules to the backbone curve is proposed. In this way, the inverse displacement analysis of the robot can be carried out by solving the inverse displacement problem of each parallel mechanism module and taking into account the length limits of the links. A HRETR with 6 modules is taken as an example to demonstrate the applicability of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Behrens R, Poggendorf M, Schulenburg E, Elkmann N. An elephant’s trunk-inspired robotic arm–trajectory determination and control. Proceedings of 7th German Conference on Robotics (ROBOTIK 2012), Munich, Germany, 2012, 417–421.

    Google Scholar 

  2. Salomon O, Wolf A. Inclined links hyper-redundant elephant trunk-like robot. Journal of Mechanisms & Robotics, 2012, 4, 045001.

    Article  Google Scholar 

  3. Guglielmino E, Tsagarakis N, Caldwell D G. An octopus anatomy-inspired robotic arm. IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, China, 2010, 3091–3096.

    Google Scholar 

  4. Kang R J, Guglielmino E, Branson D T, Caldwell D G. Bio-inspired crawling locomotion of a multi-arm octopus-like continuum system. IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal, 2012, 145–150.

    Google Scholar 

  5. Bayraktaroglu Z Y, Kilicarslan A, Kuzucu A, Hugel V, Blazevic P. Design and control of biologically inspired wheel-less snake-like robot. IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy, 2006, 1001–1006.

    Google Scholar 

  6. Hatton R L, Knepper R A, Choset H, Rillinson D, Gong C H, Galceran E. Snakes on a plan: Toward combining planning and control. IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 2013, 5174–5181.

    Google Scholar 

  7. Hirose S. Biologically inspired robots, snake-like locomotors and manipulators. Oxford University Press, Oxford, UK, 1993.

    Google Scholar 

  8. Gallardo-Alvarado J, Lesso-Arroyo R, Santos García- Miranda J. A worm-inspired new spatial hyper- redundant manipulator. Robotica, 2011, 29, 571–579.

    Article  Google Scholar 

  9. Gallardo J, Orozco H, Rico J M, González-Galván E J. A new spatial hyper-redundant manipulator. Robotics and Computer-Integrated Manufacturing, 2009, 25, 703–708.

    Article  Google Scholar 

  10. Kim Y J, Cheng S B, Kim S, Iagnemma K. A stiffness- adjustable hyperredundant manipulator using a variable neutral-line mechanism for minimally invasive surgery. IEEE Transactions on Robotics, 2014, 30, 382–395.

    Article  Google Scholar 

  11. Chirikjian G S, Burdick J W. The kinematics of hyper- redundant robot locomotion. IEEE Transactions on Robotics & Automation, 1995, 11, 781–793.

    Article  Google Scholar 

  12. Ning K J, Wörgötter F. A novel concept for building a hyper- redundant chain robot. IEEE Transactions on Robotics, 2009, 25, 1237–1248.

    Article  Google Scholar 

  13. Bayram A, Özgören M K. The conceptual design of a spatial binary hyper redundant manipulator and its forward kinematics. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2012, 226, 217–227.

    Google Scholar 

  14. Li Y M, Ma P S, Qin C J, Gao X G, Wang J B, Zhu H H. Design and study of a novel hyper-redundant manipulator. Robotica, 2003, 21, 505–509.

    Article  Google Scholar 

  15. Hu B, Wang Y, Yu J, Lu Y. Solving kinematics and stiffness of a novel n(2-UPSPS+RPS) spatial hyper-redundant manipulator. Robotica, 2016, 34, 2386–2399.

    Article  Google Scholar 

  16. Gallardo-Alvarado J, Aguilar-Nájera C R, Casique-Rosas L, Pérez-González L, Rico-Martínez J M. Solving the kinematics and dynamics of a modular spatial hyper- redundant manipulator by means of screw theory. Multibody System Dynamics, 2008, 20, 307–325.

    Article  MathSciNet  MATH  Google Scholar 

  17. Neppalli S, Csencsits M A, Jones B A, Walker I. A geometrical approach to inverse kinematics for continuum manipulators. IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 2008, 3565–3570.

    Google Scholar 

  18. Li S, Wang Y, Chen Q W, Hu W L. A new geometrical method for the inverse kinematics of the hyper-redundant manipulators. IEEE International Conference on Robotics and Biomimetics, Kunming, China, 2006, 1356–1359.

    Google Scholar 

  19. Tevatia G, Schaal S. Inverse kinematics for humanoid robots. IEEE International Conference on Robotics & Automation, San Francisco, USA, 2000, 294–299.

    Google Scholar 

  20. Kumar S, Sukavanam N, Balasubramanian R. An optimization approach to solve the inverse kinematics of redundant manipulator. International Journal of Information and System Sciences, 2010, 6, 414–423.

    MathSciNet  MATH  Google Scholar 

  21. Yang Y G, Peng G G, Wang Y F, Zhang H L. A new solution for inverse kinematics of 7-DOF manipulator based on genetic algorithm. IEEE International Conference on Automation and Logistics, Jinan, China, 2007, 1947–1951.

    Google Scholar 

  22. Zhang Y N, Wang J. A dual neural network for constrained joint torque optimization of kinematically redundant manipulators. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2002, 32, 654–662.

    Article  Google Scholar 

  23. Köker R. A genetic algorithm approach to a neural- network-based inverse kinematics solution of robotic manipulators based on error minimization. Information Sciences, 2013, 222, 528–543.

    Article  MathSciNet  MATH  Google Scholar 

  24. Chirikjian G S, Burdick J W. A modal approach to hyper- redundant manipulator kinematics. IEEE Transactions on Robotics & Automation, 1994, 10, 343–354.

    Article  Google Scholar 

  25. Chirikjian G S, Burdick J W. Kinematically optimal hyper- redundant manipulator configurations. IEEE Transactions on Robotics and Automation, 1995, 11, 794–806.

    Article  Google Scholar 

  26. Chirikjian G S. Conformational modeling of continuum structures in robotics and structural biology: A review. Advanced Robotics, 2015, 29, 817–829.

    Article  Google Scholar 

  27. Hannan M W, Walker I D. Kinematics and the implementation of an elephant’s trunk manipulator and other continuum style robots. Journal of Field Robotics, 2003, 20, 45–63.

    MATH  Google Scholar 

  28. Jones B A, Walker I D. Kinematics for multisection continuum robots. IEEE Transactions on Robotics, 2006, 22, 43–55.

    Article  Google Scholar 

  29. Zanganeh K E, Angeles J. The inverse kinematics of hyper- redundant manipulators using splines. Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, Japan, 2002, 3, 2797–2802.

    Google Scholar 

  30. Bayram A, Özgören M K. The position control of a spatial binary hyper redundant manipulator through its inverse kinematics. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2013, 227, 359–372.

    Google Scholar 

  31. Zhao Y J, Zhang Z Q, Cheng G. Inverse rigid-body dynamic analysis for a 3UPS-PRU parallel robot. Advances in Mechanical Engineering, 2017, 9, 1–14.

    Google Scholar 

  32. Zhao Y J, Cheng G. Dimensional synthesis of a 3UPS-PRU parallel robot. Robotica, 2017, 35, 2319–2329.

    Article  Google Scholar 

  33. Zhao Y J. Dynamic optimum design of a 3UPS-PRU parallel robot. International Journal of Advanced Robotic Systems, 2016, 13, https://doi.org/10.1177/1729881416676175.

  34. Zhao Y J. Dynamic performance evaluation for a 3UPS-PRU parallel robot. International Journal of Advanced Robotic Systems, 2016, 13, https://doi.org/10.1177 /1729881416665235.

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (Grant No. 51375288), the Science and Technology Program of Guangdong Province (Grant No. 2015B090906001) and Shantou (Grant No. 2016-51), and the Special Research Foundation of Discipline Construction of Guangdong Province (Grant No.2013KJCX0075). The authors would also like to thank the anonymous reviewers for their very useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjie Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Jin, L., Zhang, P. et al. Inverse Displacement Analysis of a Hyper-redundant Elephant’s Trunk Robot. J Bionic Eng 15, 397–407 (2018). https://doi.org/10.1007/s42235-018-0030-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-018-0030-z

Keywords

Navigation