Skip to main content
Log in

A Novel Variant of Moth Flame Optimizer for Higher Dimensional Optimization Problems

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Moth Flame Optimization (MFO) is a nature-inspired optimization algorithm, based on the principle of navigation technique of moth toward moon. Due to less parameter and easy implementation, MFO is used in various field to solve optimization problems. Further, for the complex higher dimensional problems, MFO is unable to make a good trade-off between global and local search. To overcome these drawbacks of MFO, in this work, an enhanced MFO, namely WF-MFO, is introduced to solve higher dimensional optimization problems. For a more optimal balance between global and local search, the original MFO’s exploration ability is improved by an exploration operator, namely, Weibull flight distribution. In addition, the local optimal solutions have been avoided and the convergence speed has been increased using a Fibonacci search process-based technique that improves the quality of the solutions found. Twenty-nine benchmark functions of varying complexity with 1000 and 2000 dimensions have been utilized to verify the projected WF-MFO. Numerous popular algorithms and MFO versions have been compared to the achieved results. In addition, the robustness of the proposed WF-MFO method has been evaluated using the Friedman rank test, the Wilcoxon rank test, and convergence analysis. Compared to other methods, the proposed WF-MFO algorithm provides higher quality solutions and converges more quickly, as shown by the experiments. Furthermore, the proposed WF-MFO has been used to the solution of two engineering design issues, with striking success. The improved performance of the proposed WF-MFO algorithm for addressing larger dimensional optimization problems is guaranteed by analyses of numerical data, statistical tests, and convergence performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 89, 228–249.

    Google Scholar 

  2. McCarthy, J. F. (1989). Block-conjugate-gradient method. Physical Review D, 40(6), 2149.

    Google Scholar 

  3. Wu, G. H., Pedrycz, W., Suganthan, P. N., & Mallipeddi, R. (2015). A variable reduction strategy for evolutionary algorithms handling equality constraints. Applied Soft Computing, 37, 774–786.

    Google Scholar 

  4. Nama, S., & Saha, A. (2019). A novel hybrid backtracking search optimization algorithm for continuous function optimization. Decision Science Letters, 8(2), 163–174.

    Google Scholar 

  5. Nama, S., & Saha, A. (2018). An ensemble symbiosis organisms search algorithm and its application to real world problems. Decision Science Letters, 7(2), 103–118.

    Google Scholar 

  6. Sharma, A., Sharma, A., Averbukh, M., Rajput, S., Jately, V., Choudhury, S., & Azzopardi, B. (2022). Improved moth flame optimization algorithm based on opposition-based learning and Lévy flight distribution for parameter estimation of solar module. Energy Reports, 8, 6576–6592.

    Google Scholar 

  7. Hou, G. L., Gong, L. J., Hu, B., Su, H. L., Huang, T., Huang, C. Z., Fan, W., & Zhao, Y. Z. (2022). Application of fast adaptive moth-flame optimization in flexible operation modeling for supercritical unit. Energy, 239, 121843.

    Google Scholar 

  8. Ma, M. X., Wu, J., Shi, Y., Yue, L. F., Yang, C., & Chen, X. (2022). Chaotic random opposition-based learning and cauchy mutation improved moth-flame optimization algorithm for intelligent route planning of multiple uavs. IEEE Access, 10, 49385–49397.

    Google Scholar 

  9. Khan, M. A., Arshad, H., Damaševičius, R., Alqahtani, A., Alsubai, S., Binbusayyis, A., Nam, Y. Y., & Kang, B.-G. (2022). Human gait analysis: a sequential framework of lightweight deep learning and improved moth-flame optimization algorithm. Computational Intelligence and Neuroscience, 2022, 1–13.

    Google Scholar 

  10. Ab. Rashid, M.F.F., Mohd Rose, A. N., & Nik Mohamed, N. M. Z., (2022). Hybrid flow shop scheduling with energy consumption in machine shop using moth flame optimization. In: Recent Trends in Mechatronics Towards Industry 4.0: Selected Articles from iM3F 2020, (pp. 77–86). Springer Singapore.

    Google Scholar 

  11. Ramachandran, R., Satheesh Kumar, J., Madasamy, B., & Veerasamy, V. (2021). A hybrid MFO-GHNN tuned self-adaptive FOPID controller for ALFC of renewable energy integrated hybrid power system. IET Renewable Power Generation, 15(7), 1582–1595.

    Google Scholar 

  12. Khalilpourazari, S., & Khalilpourazary, S. (2019). An efficient hybrid algorithm based on water cycle and moth-flame optimization algorithms for solving numerical and constrained engineering optimization problems. Soft Computing, 23(5), 1699–1722.

    Google Scholar 

  13. Xu, Y. T., Chen, H. L., Luo, J., Zhang, Q., Jiao, S., & Zhang, X. Q. (2019). Enhanced moth-flame optimizer with mutation strategy for global optimization. Information Sciences, 492, 181–203.

    MathSciNet  Google Scholar 

  14. Nadimi-Shahraki, M. H., Fatahi, A., Zamani, H., Mirjalili, S., & Abualigah, L. (2021). An improved moth-flame optimization algorithm with adaptation mechanism to solve numerical and mechanical engineering problems. Entropy, 23(12), 1637.

    MathSciNet  Google Scholar 

  15. Xu, Y. T., Chen, H. L., Heidari, A. A., Luo, J., Zhang, Q., Zhao, X. H., & Li, C. Y. (2019). An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks. Expert Systems with Applications, 129, 135–155.

    Google Scholar 

  16. Kaur, K., Singh, U., & Salgotra, R. (2020). An enhanced moth flame optimization. Neural Computing and Applications, 32(7), 2315–2349.

    Google Scholar 

  17. Gu, W. L., & Xiang, G. L. (2021). Improved moth flame optimization with multioperator for solving real-world optimization problems. 2021 IEEE 5th advanced information technology, electronic and automation control conference (IAEAC) (vol. 5, pp. 2459–2462). https://doi.org/10.1109/IAEAC50856.2021.9390876

  18. Nadimi-Shahraki, M. H., Fatahi, A., Zamani, H., Mirjalili, S., Abualigah, L., & Abd Elaziz, M. (2021). Migration-based moth-flame optimization algorithm. Processes, 9(12), 2276.

    Google Scholar 

  19. Li, Z. F., Zeng, J. H., Chen, Y. Q., Ma, G., & Liu, G. Y. (2021). Death mechanism-based moth–flame optimization with improved flame generation mechanism for global optimization tasks. Expert Systems with Applications, 183, 115436. https://doi.org/10.1016/j.eswa.2021.115436

    Article  Google Scholar 

  20. Shan, W. F., Qiao, Z. L., Heidari, A. A., Chen, H. L., Turabieh, H., & Teng, Y. T. (2021). Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis. Knowledge-Based Systems, 214, 106728. https://doi.org/10.1016/j.knosys.2020.106728

    Article  Google Scholar 

  21. Sahoo, S. K., Saha, A. K., Sharma, S., Mirjalili, S., & Chakraborty, S. (2022). An enhanced moth flame optimization with mutualism scheme for function optimization. Soft Computing, 26, 1–28.

    Google Scholar 

  22. Khan, B. S., Raja, M. A. Z., Qamar, A., & Chaudhary, N. I. (2021). Design of moth flame optimization heuristics for integrated power plant system containing stochastic wind. Applied Soft Computing, 104, 107193.

    Google Scholar 

  23. Pelusi, D., Mascella, R., Tallini, L., Nayak, J., Naik, B., & Deng, Y. (2020). An improved moth-flame optimization algorithm with hybrid search phase. Knowledge-Based Systems, 191, 105277.

    Google Scholar 

  24. Kigsirisin, S., & Miyauchi, H. (2021). Short-term operational scheduling of unit commitment using binary alternative moth-flame optimization. IEEE Access, 9, 12267–12281.

    Google Scholar 

  25. Sapre, S., & Mini, S. (2021). Emulous mechanism based multi-objective moth–flame optimization algorithm. Journal of Parallel and Distributed Computing, 150, 15–33.

    Google Scholar 

  26. Zhang, Z. D., Qin, H., Yao, L. Q., Liu, Y. Q., Jiang, Z. Q., Feng, Z. K., & Ouyang, S. (2020). Improved multi-objective moth-flame optimization algorithm based on R-domination for cascade reservoirs operation. Journal of Hydrology, 581, 124431.

    Google Scholar 

  27. Dabba, A., Tari, A., Meftali, S., & Mokhtari, R. (2021). Gene selection and classification of microarray data method based on mutual information and moth flame algorithm. Expert Systems with Applications, 166, 114012.

    Google Scholar 

  28. Kadry, S., Rajinikanth, V., Raja, N., Jude Hemanth, D., Hannon, N., & Raj, A. N. J. (2021). Evaluation of brain tumor using brain MRI with modified-moth-flame algorithm and Kapur’s thresholding: A study. Evolutionary Intelligence, 14(2), 1053–1063.

    Google Scholar 

  29. Sapre, S., & Mini, S. (2021). A differential moth flame optimization algorithm for mobile sink trajectory. Peer-to-Peer Networking and Applications, 14(1), 44–57.

    Google Scholar 

  30. Dash, S. P., Subhashini, K. R., & Satapathy, J. K. (2020). Optimal location and parametric settings of FACTS devices based on JAYA blended moth flame optimization for transmission loss minimization in power systems. Microsystem Technologies, 26(5), 1543–1552.

    Google Scholar 

  31. Sahoo, S. K., & Saha, A. K. (2022). A hybrid moth flame optimization algorithm for global optimization. Journal of Bionic Engineering, 19(5), 1522–1543. https://doi.org/10.1007/s42235-022-00207-y

    Article  Google Scholar 

  32. Sahoo, S. K., Saha, A. K., Nama, S., & Masdari, M. (2022). An improved moth flame optimization algorithm based on modified dynamic opposite learning strategy. Artificial Intelligence Review. https://doi.org/10.1007/s10462-022-10218-0

    Article  Google Scholar 

  33. Chakraborty, S., Saha, A. K., Sharma, S., Sahoo, S. K., & Pal, G. (2022). Comparative performance analysis of differential evolution variants on engineering design problems. Journal of Bionic Engineering, 19(4), 1140–1160. https://doi.org/10.1007/s42235-022-00190-4

    Article  Google Scholar 

  34. Sahoo, S. K., Saha, A. K., Ezugwu, A. E., Agushaka, J. O., Abuhaija, B., Alsoud, A. R., & Abualigah, L. (2022). Moth flame optimization: theory, modifications, hybridizations, and applications. Archives of Computational Methods in Engineering. https://doi.org/10.1007/s11831-022-09801-z

    Article  Google Scholar 

  35. Sahoo, S. K., & Saha, A. K. (2022). A modernized moth flame optimization algorithm for higher dimensional problems. In: ICSET: International Conference on Sustainable Engineering and Technology, (vol. 1(1), pp. 9–20).

  36. Bigham, A., & Gholizadeh, S. (2020). Topology optimization of nonlinear single-layer domes by an improved electro-search algorithm and its performance analysis using statistical tests. Structural and Multidisciplinary Optimization, 62, 1821–1848.

    MathSciNet  Google Scholar 

  37. Gholizadeh, S., Razavi, N., & Shojaei, E. (2019). Improved black hole and multiverse algorithms for discrete sizing optimization of planar structures. Engineering Optimization, 51(10), 1645–1667.

    MathSciNet  MATH  Google Scholar 

  38. Gholizadeh, S., Davoudi, H., & Fattahi, F. (2017). Design of steel frames by an enhanced moth-flame optimization algorithm. Steel & Composite Structures, 24(1), 129–140.

    Google Scholar 

  39. Gholizadeh, S., & Aligholizadeh, V. (2019). Reliability-based optimum seismic design of RC frames by a metamodel and metaheuristics. The Structural Design of Tall and Special Buildings, 28(1), e1552. https://doi.org/10.1002/tal.1552

    Article  Google Scholar 

  40. Wang, G. G., Deb, S., & Cui, Z. H. (2019). Monarch butterfly optimization. Neural Computing and Applications, 31(7), 1995–2014.

    Google Scholar 

  41. Li, S. M., Chen, H. L., Wang, M. J., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems, 111, 300–323.

    Google Scholar 

  42. Wang, G. G. (2018). Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Memetic Computing, 10(2), 151–164.

    Google Scholar 

  43. Yang, Y. T., Chen, H. L., Heidari, A. A., & Gandomi, A. H. (2021). Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems with Applications, 177, 114864.

    Google Scholar 

  44. Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X. F., & Chen, H. L. (2021). RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications, 181, 115079.

    Google Scholar 

  45. Tu, J. Z., Chen, H. L., Wang, M. J., & Gandomi, A. H. (2021). The colony predation algorithm. Journal of Bionic Engineering, 18(3), 674–710.

    Google Scholar 

  46. Ahmadianfar, I., Heidari, A. A., Noshadian, S., Chen, H. L., & Gandomi, A. H. (2022). INFO: An efficient optimization algorithm based on weighted mean of vectors. Expert Systems with Applications, 195, 116516.

    Google Scholar 

  47. Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. L. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849–872.

    Google Scholar 

  48. Nadimi-Shahraki, M. H., Taghian, S., Mirjalili, S., Ewees, A. A., Abualigah, L., & Abd Elaziz, M. (2021). Mtv-mfo: Multi-trial vector-based moth-flame optimization algorithm. Symmetry, 13(12), 2388.

    Google Scholar 

  49. Hai, T., Zhou, J. C., Masdari, M., & Marhoon, H. A. (2023). A hybrid marine predator algorithm for thermal-aware routing scheme in wireless body area networks. Journal of Bionic Engineering, 20(1), 81–104.

    Google Scholar 

  50. Gharehchopogh, F. S., Nadimi-Shahraki, M. H., Barshandeh, S., Abdollahzadeh, B., & Zamani, H. (2023). Cqffa: A chaotic quasi-oppositional farmland fertility algorithm for solving engineering optimization problems. Journal of Bionic Engineering, 20(1), 158–183.

    Google Scholar 

  51. Sharma, S., Khodadadi, N., Saha, A. K., Gharehchopogh, F. S., & Mirjalili, S. (2022). Non-dominated sorting advanced butterfly optimization algorithm for multi-objective problems. Journal of Bionic Engineering. https://doi.org/10.1007/s42235-022-00288-9

    Article  Google Scholar 

  52. Ezugwu, A. E., Agushaka, J. O., Abualigah, L., Mirjalili, S., & Gandomi, A. H. (2022). Prairie dog optimization algorithm. Neural Computing and Applications, 34(22), 20017–20065.

    Google Scholar 

  53. Houssein, E. H., Saad, M. R., Ali, A. A., & Shaban, H. (2023). An efficient multi-objective gorilla troops optimizer for minimizing energy consumption of large-scale wireless sensor networks. Expert Systems with Applications, 212, 118827.

    Google Scholar 

  54. Yu, C. Y., Heidari, A. A., & Chen, H. L. (2020). A quantum-behaved simulated annealing algorithm-based moth-flame optimization method. Applied Mathematical Modelling, 87, 1–19.

    MathSciNet  MATH  Google Scholar 

  55. Long, W., Jiao, J. J., Liang, X. M., & Tang, M. Z. (2018). An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization. Engineering Applications of Artificial Intelligence, 68, 63–80.

    Google Scholar 

  56. Chakraborty, S., Nama, S., & Saha, A. K. (2022). An improved symbiotic organisms search algorithm for higher dimensional optimization problems. Knowledge-Based Systems, 236, 107779.

    Google Scholar 

  57. Li, Y., Yu, X. M., & Liu, J. S. (2022). Enhanced butterfly optimization algorithm for large-scale optimization problems. Journal of Bionic Engineering, 19, 1–17.

    Google Scholar 

  58. Chakraborty, S., Saha, A. K., Chakraborty, R., & Saha, M. (2021). An enhanced whale optimization algorithm for large scale optimization problems. Knowledge-Based Systems, 233, 107543.

    Google Scholar 

  59. Long, W., Wu, T. B., Liang, X. M., & Xu, S. J. (2019). Solving high-dimensional global optimization problems using an improved sine cosine algorithm. Expert Systems with Applications, 123, 108–126.

    Google Scholar 

  60. Wang, H., Liang, M. N., Sun, C. L., Zhang, G. C., & Xie, L. P. (2021). Multiple-strategy learning particle swarm optimization for large-scale optimization problems. Complex & Intelligent Systems, 7(1), 1–16.

    Google Scholar 

  61. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  62. Molina, D., LaTorre, A., & Herrera, F. (2018). SHADE with iterative local search for large-scale global optimization. In: 2018 IEEE congress on evolutionary computation (CEC) (pp. 1–8). IEEE.

  63. Wang, M., Wang, J. S., Li, X. D., Zhang, M., & Hao, W. K. (2022). Harris hawk optimization algorithm based on cauchy distribution inverse cumulative function and tangent flight operator. Applied Intelligence, 52, 10999–11026.

    Google Scholar 

  64. Houssein, E. H., Saad, M. R., Hashim, F. A., Shaban, H., & Hassaballah, M. (2020). Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems. Engineering Applications of Artificial Intelligence, 94, 103731.

    Google Scholar 

  65. Krohling, R. A., & dos Santos Coelho, L. (2006). PSO-E: Particle swarm with exponential distribution. IEEE International Conference on Evolutionary Computation, 2006, 1428–1433.

    Google Scholar 

  66. Layeb, A. (2022). Tangent search algorithm for solving optimization problems. Neural Computing and Applications, 34(11), 8853–8884.

    Google Scholar 

  67. Waloddi, W. (1951). A statistical distribution function of wide applicability. Journal of Applied Mechanics, Transactions ASME, 18(3), 293–297.

  68. Layeb, A. (2022). Differential evolution algorithms with novel mutations, adaptive parameters and weibull flight operator [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-1898342/v1

  69. Salgotra, R., Singh, U., Saha, S., & Gandomi, A. H. (2021). Self adaptive cuckoo search: Analysis and experimentation. Swarm and Evolutionary Computation, 60, 100751. https://doi.org/10.1016/j.swevo.2020.100751

    Article  Google Scholar 

  70. Yazıcı, İ, Yaylacı, E. K., Cevher, B., Yalçın, F., & Yüzkollar, C. (2021). A new MPPT method based on a modified Fibonacci search algorithm for wind energy conversion systems. Journal of Renewable and Sustainable Energy, 13(1), 013304.

    Google Scholar 

  71. Ramaprabha, R. (2012). Maximum power point tracking of partially shaded solar PV system using modified Fibonacci search method with fuzzy controller. International Journal of Electrical Power & Energy Systems, 43, 754–765.

    Google Scholar 

  72. Jamil, M., & Yang, X. S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150. https://doi.org/10.1504/IJMMNO.2013.055204

    Article  MATH  Google Scholar 

  73. Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    MathSciNet  MATH  Google Scholar 

  74. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In: Proceedings of ICNN’95—international conference on neural networks (vol. 4, pp. 1942–1948).

  75. Yang, X. S. (2012). Flower pollination algorithm for global optimization. in: Unconventional Computation and Natural Computation, Lecture Notes in Computer Science, 7445, (pp. 240–249).

  76. Arora, S., & Singh, S. (2015). Butterfly algorithm with levy flights for global optimization. 2015 International Conference on Signal Processing, Computing and Control (ISPCC), Waknaghat, India, (pp. 220–224).

  77. Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191.

    Google Scholar 

  78. Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120–133.

    Google Scholar 

  79. Soliman, G. M. A., Khorshid, M. M. H., & Abou-El-Enien, T. H. M. (2016). Modified moth-flame optimization algorithms for terrorism prediction. International Journal of Application or Innovation in Engineering and Management, 5(7), 12.

    Google Scholar 

  80. Elsakaan, A. A., El-Sehiemy, R. A., Kaddah, S. S., & Elsaid, M. I. (2018). An enhanced moth-flame optimizer for solving non-smooth economic dispatch problems with emissions. Energy, 157, 1063–1078.

    Google Scholar 

  81. Chen, C. C., Wang, X. C., Yu, H. L., Wang, M. J., & Chen, H. L. (2021). Dealing with multi-modality using synthesis of Moth-flame optimizer with sine cosine mechanisms. Mathematics and Computers in Simulation, 188, 291–318.

    MathSciNet  MATH  Google Scholar 

  82. Azizi, M., Talatahari, S., & Gandomi, A. H. (2022). Fire hawk optimizer: a novel metaheuristic algorithm. Artificial Intelligence Review, 56(1), 287–363.

    Google Scholar 

  83. Sharma, S., Chakraborty, S., Saha, A. K., Nama, S., & Sahoo, S. K. (2022). mLBOA: A modified butterfly optimization algorithm with lagrange interpolation for global optimization. Journal of Bionic Engineering. https://doi.org/10.1007/s42235-022-00175-3

    Article  Google Scholar 

  84. Nama, S., Sharma, S., Saha, A. K., & Gandomi, A. H. (2022). A quantum mutation-based backtracking search algorithm. Artificial Intelligence Review, 55(4), 3019–3073.

    Google Scholar 

  85. Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3–18.

    Google Scholar 

  86. Nama, S. (2022). A novel improved SMA with quasi reflection operator: Performance analysis, application to the image segmentation problem of Covid-19 chest X-ray images. Applied Soft Computing, 118, 108483.

    Google Scholar 

  87. Tang, A., Zhou, H., Han, T., & Xie, L. (2021). A modified manta ray foraging optimization for global optimization problems. IEEE Access, 9, 128702–128721.

    Google Scholar 

  88. Sharma, S., & Saha, A. K. (2020). m-MBOA: A novel butterfly optimization algorithm enhanced with mutualism scheme. Soft Computing, 24(7), 4809–4827.

    Google Scholar 

  89. Gu, H. M., & Wang, X. (2016). Application of nsga-ii algorithm in the design of car body lateral crashworthiness. DEStech Transactions on Materials Science and Engineering, icmeat.

  90. Yildiz, A. R., Abderazek, H., & Mirjalili, S. (2020). A comparative study of recent non-traditional methods for mechanical design optimization. Archives of Computational Methods in Engineering, 27(4), 1031–1048. https://doi.org/10.1007/s11831-019-09343-x

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apu Kumar Saha.

Ethics declarations

Conflict of Interest

The authors affirm that they have no known financial or interpersonal conflicts that would have appeared to have an impact on the research presented in this study.

Ethical Approval

This article does not contain any of the authors' research involving humans or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Formulation of 29 benchmark functions

Appendix 1: Formulation of 29 benchmark functions

Sl. no

Functions

Formulation of objective functions

d

F min

Search space

  

Unimodal benchmark functions

   

F1

Sphere

\(f\left( x \right) = \sum\nolimits_{j = 1}^{d} {x_{j}^{2} }\)

30

0

[− 100, 100]

F2

Matyas

\(f\left( x \right) = 0.26\left( {x_{1}^{2} + x_{2}^{2} } \right) - 0.48x_{1} x_{2}\)

2

0

[− 10, 10]

F3

Sumsquare

\(f\left( x \right) = \sum\nolimits_{i = 1}^{D} {x_{i}^{2} \times i}\)

30

0

[− 10, 10]

F4

Zettl

\(f\left( x \right) = \left( {x - 1^{2} + x - 2^{2} - 2x_{1} } \right)^{2} + 0.25x_{1}\)

2

− 0.00379

[− 1, 5]

F5

Zakhrov

\(f\left( x \right) = \sum\nolimits_{j = 1}^{d} {x_{j}^{2} } + \left( {0.5\sum\nolimits_{j = 1}^{d} {jx_{j} } } \right)^{2} + \left( {0.5\sum\nolimits_{j = 1}^{d} {jx_{j} } } \right)^{4}\)

2

0

[− 5, 10]

F6

High conditioned elliptic function

\(f\left( x \right) = \sum\nolimits_{j = 1}^{d} {\left( {1000000^{{\left( {\frac{j - 1}{{D - 1}}} \right)}} \times x_{j}^{2} } \right)}\)

30

0

[− 100, 100]

F7

Brown

\(f\left( x \right) = \sum\nolimits_{j = 1}^{n - 1} {\left( {x_{j}^{2} } \right)^{{(x_{j + 1}^{2} + 1)}} + \left( {\left( {x_{j + 1}^{2} } \right)^{{(x_{j}^{2} + 1)}} } \right)}\)

30

0

[− 1, 4]

F8

Cube

\(f\left( x \right) = 100\left( {x_{2} - x_{1}^{3} } \right)^{2} + \left( {1 - x_{1} } \right)^{2}\)

2

0

[− 10, 10]

F9

Rotated hyperellipsoid

\(f\left( x \right) = \sum\nolimits_{j = 1}^{d} {\left( {d + 1 - j} \right)x_{j}^{2} }\)

30

0

[− 100, 100]

F10

Schwefel 1.2

\(f\left( x \right) = \sum\nolimits_{j = 1}^{d} {\sum\nolimits_{k = 1}^{j} {x_{j}^{2} } }\)

30

0

[− 100, 100]

F11

Schwefel 2.21

\(f\left( x \right) = \max \left\{ {\left| {x_{j} } \right|, 1 \le j \le d} \right\}\)

30

0

[− 100, 100]

F12

Rosenbrock

\(f\left( x \right) = \sum\nolimits_{j = 1}^{d} {[100\left( {x_{j + 1} - x_{j}^{2} } \right)^{2} + \left( {x_{j} - 1} \right)^{2} ]}\)

30

0

[− 2.048, 2.048]

F13

Cigar

\(f\left( x \right) = 10^{6} \sum\nolimits_{j = 1}^{d} {x_{j}^{2} }\)

30

0

[− 100, 100]

F14

Step

\(f\left( x \right) = \mathop \sum \limits_{j = 1}^{d} \left( {x_{j} + 0.5} \right)^{2}\)

30

0

[− 100, 100]

Multimodal benchmark functions

F15

Bohachevsky

\(f\left( x \right) = x_{1}^{2} + 2x_{2}^{2} - 0.3\cos \left( {3\pi x_{1} } \right) - 0.3\)

2

0

[− 100, 100]

F16

Bohachevsky 3

\(f\left( x \right) = x_{1}^{2} + 2x_{2}^{2} - 0.3\cos \left( {3\pi x_{1} } \right) - 0.3\)

2

0

[− 50, 50]

F17

Levy

\(f\left( x \right) = \sin^{2} \left( {\pi x_{1} } \right) + \sum\nolimits_{i = 1}^{D - 1} {\left( {x_{i} - 1} \right)^{2} \left[ {1 + 10\sin^{2} \left( {\pi x_{i} + 1} \right)} \right] + \left( {x_{D} - 1} \right)^{2} \left[ {1 + \sin^{2} \left( {2\pi x_{D} } \right)} \right]}\) where \(x_{i} = 1 + \frac{1}{4}(x_{i} - 1), i = 1,2, \ldots D\)

30

0

[− 10, 10]

F18

Alpine

\(f\left( x \right) = \sum\nolimits_{i = 1}^{D} {\left| {x_{i} \sin (x_{i} ) + 0.1x_{i} } \right|}\)

30

0

[− 10, 10]

F19

Schaffers

\(f\left( x \right) = 0.5 + \frac{{\sin^{2} \left( {x_{1}^{2} + x_{2}^{2} } \right) - 0.5}}{{\left[ {1 + 0.001\left( {x_{1}^{2} + x_{2}^{2} } \right)} \right]^{2} }}\)

2

0

[− 100, 100]

F20

Salomon

\(f\left( x \right) = 1 - \cos \left( {2\pi \sqrt {\sum\nolimits_{j = 1}^{d} {x_{j}^{2} } } } \right) + 0.1\sqrt {\sum\nolimits_{j = 1}^{d} {x_{j}^{2} } }\)

30

0

[− 100, 100]

F21

Penalized 2

\(f\left( x \right) = 0.1\left\{ { 10\sin^{2} \left( {\pi x_{i} } \right) + \sum\nolimits_{i = 1}^{D - 1} {\left( {x_{i} - 1} \right)^{2} [1 + 10\sin^{2} \left( {3\pi x_{i + 1} } \right) + \left( {x_{D} - 1} \right)^{2} [1 + \sin^{2} \left( {2\pi x_{D} } \right)]]} } \right\} + \sum\nolimits_{i = 1}^{D} {u\left( {x_{i} ,5,100,4} \right)}\)

30

0

[− 50, 50]

F22

Inverted cosine mixture

\(f\left( x \right) = 0.1 \times 30 - \left[ {0.1 \times \sum\nolimits_{j = 1}^{d} {5\pi x_{j} } - \sum\nolimits_{j = 1}^{d} {x_{j}^{2} } } \right]\)

30

0

[− 1, 1]

F23

Modified sphere

\(f\left( x \right) = \sum\nolimits_{j = 1}^{6} {\frac{{\left( {x_{j}^{2} \times 2^{j} } \right) - 1745}}{899}}\)

30

0

[− 5.12, 5.12]

F24

Drop wave

\(f\left( x \right) = 1 - \frac{{1 + \cos \left( {12\sqrt {x_{1}^{2} + x_{2}^{2} } } \right)}}{{0.5\left( {x_{1}^{2} + x_{2}^{2} } \right) + 2}}\)

− 1

[− 5.12, 5.12]

F25

Egg-holder

\(f\left( x \right) = \left[ { - \left( {47 + x_{i + 1} } \right)\sin \begin{array}{*{20}c} {\sqrt {\left| {x_{i + 1} + \frac{{x_{i} }}{2} + 47} \right|} } \\ { - x_{i} \sin \sqrt {x_{i} - \left( {x_{i + 1} + 47} \right)} } \\ \end{array} } \right]\)

30

− 959.6407

[− 512, 512]

F26

Rastrigin

\(f\left( x \right) = 10D + \sum\nolimits_{j = 1}^{d} {[x_{j}^{2} - 10\cos (2\pi x_{j} )]}\)

30

0

[− 5.12, 5.12]

F27

Schwefel 2.26

\(f\left( x \right) = - \sum\nolimits_{j = 1}^{d} {x_{j} \sin \left( {\sqrt {\left| {x_{j} } \right|} } \right)}\)

30

− 418.982

[− 500, 500]

F28

Ackley

\(f\left( x \right) = 20 + e - 20e^{{\frac{1}{d}\left( {\sqrt {\left( {\frac{1}{d}\sum\nolimits_{j = 1}^{d} {x_{j}^{2} } } \right)} } \right)}} - e^{{\frac{1}{d}\left( {\sum \cos \left( {2\pi x_{j} } \right)} \right)}}\)

30

0

[− 32.768, 32.768]

F29

Griewank

\(f\left( x \right) = \sum\nolimits_{j = 1}^{d} {\frac{{x_{j}^{2} }}{4000}} - \prod\nolimits_{j = 1}^{d} {\cos \left( {\frac{{x_{j} }}{\sqrt j }} \right) - 1}\)

30

0

[− 600, 600]

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S.K., Sharma, S. & Saha, A.K. A Novel Variant of Moth Flame Optimizer for Higher Dimensional Optimization Problems. J Bionic Eng 20, 2389–2415 (2023). https://doi.org/10.1007/s42235-023-00357-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00357-7

Keywords

Navigation