Skip to main content
Log in

A facile gas-driven ink spray (GDIS) deposition strategy toward hole-conductor-free carbon-based perovskite solar cells

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

A fire-new spray method was employed to fabricate hole-conductor-free carbon-based perovskite solar cells. With the use of superfine airbrushes, low-temperature commercial carbon paste, and their ester dispersants, this work proposes a low-cost, time-saving, skillful gas-driven ink spray (GDIS) deposition strategy to stable perovskite solar cells. Under optimized conditions, a champion photoelectric conversion efficiency (PCE) value of 8.70% and a stabilized PCE value of 7.03% were achieved. More importantly, the hole-conductor-free carbon-based perovskite solar cells exhibit excellent stability after 60 days of storage in the dark with an RH of 30%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Best research-cell efficiencies (Updated to 27th April, 2019), https://www.nrel.gov/pv/assets/pdfs/best-Research-Cell-Efficiencies-190416.pdf. (n.d.).

  2. B. wook Park, S. Il Seok, Intrinsic instability of inorganic–organic hybrid halide perovskite materials, advanced materials. 1805337 (2019) 1–17. https://doi.org/10.1002/adma.201805337.

  3. M. Jung, S.G. Ji, G. Kim, S. Il Seok, Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chemical Society Reviews. 48(2011), 2038 (2019). https://doi.org/10.1039/c8cs00656c

    Article  CAS  Google Scholar 

  4. F. Meng, A. Liu, L. Gao, J. Cao, Y. Yan, N. Wang, M. Fan, G. Wei, T. Ma, Current progress in interfacial engineering of carbon-based perovskite solar cells. Journal of Materials Chemistry A. 7, 8690–8699 (2019). https://doi.org/10.1039/c9ta01364d

    Article  CAS  Google Scholar 

  5. H.S. Kim, J.Y. Seo, N.G. Park, Material and device stability in perovskite solar cells. Chemsuschem 9, 2528–2540 (2016). https://doi.org/10.1002/cssc.201600915

    Article  CAS  Google Scholar 

  6. R.G. Wilks, M. Bär, Perovskite solar cells: Danger from within. Nat. Energy 2, 16204 (2017). https://doi.org/10.1038/nenergy.2016.204

    Article  Google Scholar 

  7. M. Grätzel, The light and shade of perovskite solar cells. Nat. Mater. 13, 838–842 (2014). https://doi.org/10.1038/nmat4065

    Article  CAS  Google Scholar 

  8. P. Gao, M. Grätzel, M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7, 2448–2463 (2014). https://doi.org/10.1039/c4ee00942h

    Article  CAS  Google Scholar 

  9. J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. JesperJacobsson, M. Grätzel, A. Hagfeldt, The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science 10(710), 727 (2017). https://doi.org/10.1039/C6EE03397K

    Article  Google Scholar 

  10. Y. Cai, L. Liang, P. Gao, Promise of commercialization: carbon materials for low-cost perovskite solar cells. Chin. Phys. B 27, 18805 (2018). https://doi.org/10.1088/1674-1056/27/1/018805

    Article  CAS  Google Scholar 

  11. W. Zhou, Z. Wen, P. Gao, Less is more: dopant-free hole transporting materials for high-efficiency perovskite solar cells. Adv. Energy Mater. 8, 1702512 (2018). https://doi.org/10.1002/aenm.201702512

    Article  CAS  Google Scholar 

  12. L. Calió, S. Kazim, M. Grätzel, S. Ahmad, Hole-transport materials for perovskite solar cells. Angewandte Chemie - International Edition. 55, 14522–14545 (2016). https://doi.org/10.1002/anie.201601757

    Article  CAS  Google Scholar 

  13. H. Chen, S. Yang, Carbon-based perovskite solar cells without hole transport materials: the front runner to the market?, Advanced Materials. 29 (2017). https://doi.org/10.1002/adma.201603994.

  14. L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, Mesoscopic CH 3 NH 3 PbI 3 /TiO 2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012). https://doi.org/10.1021/ja307789s

    Article  CAS  Google Scholar 

  15. T. Leijtens, Overcoming ultraviolet light instability of Overcoming ultraviolet light instability of sensitized TiO 2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 1–8 (2013). https://doi.org/10.1038/ncomms3885

    Article  CAS  Google Scholar 

  16. K. Domanski, J.-P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate, M. Saliba, W. Tress, A. Hagfeldt, M. Grätzel, Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306–6314 (2016). https://doi.org/10.1021/acsnano.6b02613

    Article  CAS  Google Scholar 

  17. L. Liang, Y. Cai, X. Li, M.K. Nazeeruddin, P. Gao, All that glitters is not gold: Recent progress of alternative counter electrodes for perovskite solar cells. Nano Energy 52, 211–238 (2018). https://doi.org/10.1016/j.nanoen.2018.07.049

    Article  CAS  Google Scholar 

  18. J. Ryu, K. Lee, J. Yun, H. Yu, J. Lee, J. Jang, Paintable carbon-based perovskite solar cells with engineered perovskite / carbon interface using carbon nanotubes dripping method, (2017) 1–8. https://doi.org/10.1002/smll.201701225.

  19. K. Aitola, K. Sveinbjörnsson, J.-P. Correa-Baena, A. Kaskela, A. Abate, Y. Tian, E.M.J. Johansson, M. Grätzel, E.I. Kauppinen, A. Hagfeldt, G. Boschloo, Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells. Energy Environ Sci. 9, 461–466 (2016). https://doi.org/10.1039/C5EE03394B

    Article  CAS  Google Scholar 

  20. X. Zheng, H. Chen, Q. Li, Y. Yang, Z. Wei, Y. Bai, Y. Qiu, D. Zhou, K.S. Wong, S. Yang, Boron doping of multiwalled carbon nanotubes significantly enhances hole extraction in carbon-based perovskite solar cells. Nano Lett. 17, 2496–2505 (2017). https://doi.org/10.1021/acs.nanolett.7b00200

    Article  CAS  Google Scholar 

  21. Z. Wei, H. Chen, K. Yan, X. Zheng, S. Yang, Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor. Journal of Materials Chemistry A. 3, 24226–24231 (2015). https://doi.org/10.1039/C5TA07714A

    Article  CAS  Google Scholar 

  22. Z. Li, P.P. Boix, G. Xing, K. Fu, S.A. Kulkarni, S.K. Batabyal, W. Xu, A. Cao, T.C. Sum, N. Mathews, L.H. Wong, Carbon nanotubes as an efficient hole collector for high voltage methylammonium lead bromide perovskite solar cells. Nanoscale 3, 6352–6360 (2016). https://doi.org/10.1039/c5nr06177f

    Article  Google Scholar 

  23. M. Bag, L.A. Renna, S.P. Jeong, X. Han, C.L. Cutting, D. Maroudas, D. Venkataraman, Evidence for reduced charge recombination in carbon nanotube/perovskite-based active layers. Chem. Phys. Lett. 662, 35–41 (2016). https://doi.org/10.1016/j.cplett.2016.09.004

    Article  CAS  Google Scholar 

  24. J. Lee, M.M. Menamparambath, J.-Y. Hwang, S. Baik, Hierarchically structured hole transport layers of Spiro-OMeTAD and multiwalled carbon nanotubes for perovskite solar cells. Chemsuschem 8, 2358–2362 (2015). https://doi.org/10.1002/cssc.201403462

    Article  CAS  Google Scholar 

  25. K. Aitola, K. Domanski, J.-P. Correa-Baena, K. Sveinbjörnsson, M. Saliba, A. Abate, M. Grätzel, E. Kauppinen, E.M.J. Johansson, W. Tress, A. Hagfeldt, G. Boschloo, High temperature-stable perovskite solar cell based on low-cost carbon nanotube hole contact. Adv. Mater. 29, 1606398 (2017). https://doi.org/10.1002/adma.201606398

    Article  CAS  Google Scholar 

  26. D.R. Barbero, S.D. Stranks, Functional single-walled carbon nanotubes and Nanoengineered networks for organic- and perovskite-solar-cell applications. Adv. Mater. 28, 9668–9685 (2016). https://doi.org/10.1002/adma.201600659

    Article  CAS  Google Scholar 

  27. Q. Luo, H. Ma, Y. Zhang, X. Yin, Z. Yao, N. Wang, J. Li, S. Fan, K. Jiang, H. Lin, Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells. J Mater Chem A. 4, 5569–5577 (2016). https://doi.org/10.1039/C6TA01715K

    Article  CAS  Google Scholar 

  28. X. Wang, Z. Li, W. Xu, S.A. Kulkarni, S.K. Batabyal, S. Zhang, A. Cao, L.H. Wong, TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy 11, 728–735 (2015). https://doi.org/10.1016/j.nanoen.2014.11.042

    Article  CAS  Google Scholar 

  29. H. Li, K. Cao, J. Cui, S. Liu, X. Qiao, Y. Shen, M. Wang, 14.7% Efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes. Nanoscale 8(6379), 6385 (2016). https://doi.org/10.1039/C5NR07347B

    Article  CAS  Google Scholar 

  30. Z. Li, S.A. Kulkarni, P.P. Boix, E. Shi, A. Cao, K. Fu, S.K. Batabyal, J. Zhang, Q. Xiong, L.H. Wong, N. Mathews, S.G. Mhaisalkar, Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8, 6797–6804 (2014). https://doi.org/10.1021/nn501096h

    Article  CAS  Google Scholar 

  31. F. Lang, M.A. Gluba, S. Albrecht, J. Rappich, L. Korte, B. Rech, N.H. Nickel, Perovskite solar cells with large-area CVD-graphene for tandem solar cells. The Journal of Physical Chemistry Letters 6(2745), 2750 (2015). https://doi.org/10.1021/acs.jpclett.5b01177

    Article  CAS  Google Scholar 

  32. J. Yoon, H. Sung, G. Lee, W. Cho, N. Ahn, H.S. Jung, M. Choi, Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ Sci. 10, 337–345 (2017). https://doi.org/10.1039/C6EE02650H

    Article  CAS  Google Scholar 

  33. P. You, Z. Liu, Q. Tai, S. Liu, F. Yan, Efficient semitransparent perovskite solar cells with graphene electrodes. Adv. Mater. 27, 3632–3638 (2015). https://doi.org/10.1002/adma.201501145

    Article  CAS  Google Scholar 

  34. Z. Liu, P. You, C. Xie, G. Tang, F. Yan, Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy 28, 151–157 (2016). https://doi.org/10.1016/j.nanoen.2016.08.038

    Article  CAS  Google Scholar 

  35. H. Sung, N. Ahn, M.S. Jang, J.-K. Lee, H. Yoon, N.-G. Park, M. Choi, Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv. Energy Mater. 6, 1501873 (2016). https://doi.org/10.1002/aenm.201501873

    Article  CAS  Google Scholar 

  36. S. Wang, P. Jiang, W. Shen, A. Mei, S. Xiong, X. Jiang, Y. Rong, Y. Tang, Y. Hu, H. Han, A low-temperature carbon electrode with good perovskite compatibility and high flexibility in carbon based perovskite solar cells. Chem. Commun. 55, 2765–2768 (2019). https://doi.org/10.1039/c8cc09905g

    Article  CAS  Google Scholar 

  37. J. Duan, T. Hu, Y. Zhao, B. He, Q. Tang, Carbon-electrode-tailored all-inorganic perovskite solar cells to harvest solar and water-vapor energy. Angewandte Chemie - International Edition. 57, 5746–5749 (2018). https://doi.org/10.1002/anie.201801837

    Article  CAS  Google Scholar 

  38. Z. Yu, B. Chen, P. Liu, C. Wang, C. Bu, N. Cheng, S. Bai, Y. Yan, X. Zhao, Stable organic-inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engineering. Adv. Func. Mater. 26, 4866–4873 (2016). https://doi.org/10.1002/adfm.201504564

    Article  CAS  Google Scholar 

  39. Z. Liu, T. Shi, Z. Tang, B. Sun, G. Liao, Using a low-temperature carbon electrode for preparing hole-conductor-free perovskite heterojunction solar cells under high relative humidity. Nanoscale 8, 7017–7023 (2016). https://doi.org/10.1039/C5NR07091K

    Article  CAS  Google Scholar 

  40. H.N. Chen, Z.H. Wei, H.X. He, X.L. Zheng, K.S. Wong, S.H. Yang, Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%. Adv. Energy Mater. 6, 1502087 (2016). https://doi.org/10.1002/aenm.201502087

    Article  CAS  Google Scholar 

  41. C.-Y. Chan, Y. Wang, G.-W. Wu, E.W.-G. Diau, Solvent-extraction crystal growth for highly efficient carbon-based mesoscopic perovskite solar cells free of hole conductors. J Mater Chem A. 4, 3872–3878 (2016). https://doi.org/10.1039/C6TA00912C

    Article  CAS  Google Scholar 

  42. S. Gholipour, J.-P. Correa-Baena, K. Domanski, T. Matsui, L. Steier, F. Giordano, F. Tajabadi, W. Tress, M. Saliba, A. Abate, A. Morteza Ali, N. Taghavinia, M. Grätzel, A. Hagfeldt, Highly efficient and stable perovskite solar cells based on a low-cost carbon cloth. Advanced Energy Materials 6, 1601116 (2016). https://doi.org/10.1002/aenm.201601116

    Article  CAS  Google Scholar 

  43. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M.M. Xu, M. Hu, J. Chen, Y. Yang, M. Gratzel, H. Han, M. Grätzel, H. Han, M. Gratzel, H. Han, A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014). https://doi.org/10.1126/science.1254763

    Article  CAS  Google Scholar 

  44. K. Cao, Z. Zuo, J. Cui, Y. Shen, T. Moehl, S.M. Zakeeruddin, M. Grätzel, M. Wang, Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture. Nano Energy 17, 171–179 (2015). https://doi.org/10.1016/j.nanoen.2015.08.009

    Article  CAS  Google Scholar 

  45. F. Zhang, X. Yang, H. Wang, M. Cheng, J. Zhao, L. Sun, Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. ACS Appl. Mater. Interfaces. 6, 16140–16146 (2014). https://doi.org/10.1021/am504175x

    Article  CAS  Google Scholar 

  46. H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du, T. Ma, Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. J. Phys. Chem. Lett. 5, 3241–3246 (2014). https://doi.org/10.1021/jz5017069

    Article  CAS  Google Scholar 

  47. H. Wei, J. Xiao, Y. Yang, S. Lv, J. Shi, X. Xu, J. Dong, Y. Luo, D. Li, Q. Meng, Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells. Carbon 93, 861–868 (2015). https://doi.org/10.1016/j.carbon.2015.05.042

    Article  CAS  Google Scholar 

  48. J. Bouclé, N. Herlin-Boime, The benefits of graphene for hybrid perovskite solar cells. Synth. Met. 222, 3–16 (2016). https://doi.org/10.1016/j.synthmet.2016.03.030

    Article  CAS  Google Scholar 

  49. M. Acik, S.B. Darling, Graphene in perovskite solar cells: device design, characterization and implementation. Journal of Materials Chemistry A. 4, 6185–6235 (2016). https://doi.org/10.1039/C5TA09911K

    Article  CAS  Google Scholar 

  50. Z. Yin, J. Zhu, Q. He, X. Cao, C. Tan, H. Chen, Q. Yan, H. Zhang, Graphene-based materials for solar cell applications. Adv. Energy Mater. 4, 1300574 (2014). https://doi.org/10.1002/aenm.201300574

    Article  CAS  Google Scholar 

  51. M. Chang, S. Huang, Carbon-Based materials used for perovskite solar cell. ChemNanoMat. 83, 515–527 (2015). https://doi.org/10.1111/tpj.12910

    Article  CAS  Google Scholar 

  52. S.N. Habisreutinger, R.J. Nicholas, H.J. Snaith, Carbon nanotubes in perovskite solar cells. Adv. Energy Mater. 7, 1601839 (2017). https://doi.org/10.1002/aenm.201601839

    Article  CAS  Google Scholar 

  53. S. Collavini, J.L. Delgado, Carbon nanoforms in perovskite-based solar cells. Adv. Energy Mater. 7, 1601000 (2017). https://doi.org/10.1002/aenm.201601000

    Article  CAS  Google Scholar 

  54. H. Zhang, J. Xiao, J. Shi, H. Su, Y. Luo, D. Li, H. Wu, Y.-B. Cheng, Q. Meng, Self-adhesive macroporous carbon electrodes for efficient and stable perovskite solar cells. Adv. Func. Mater. 28, 1802985 (2018). https://doi.org/10.1002/adfm.201802985

    Article  CAS  Google Scholar 

  55. J. Yoon, U. Kim, Y. Yoo, J. Byeon, S. Lee, J. Nam, K. Kim, Q. Zhang, E.I. Kauppinen, S. Maruyama, P. Lee, I. Jeon, Foldable perovskite solar cells using carbon nanotube-embedded ultrathin polyimide conductor. Advanced Science. 8, 2004092 (2021). https://doi.org/10.1002/advs.202004092

    Article  CAS  Google Scholar 

  56. G. Zhang, P. Xie, Z. Huang, Z. Yang, Z. Pan, Y. Fang, H. Rao, X. Zhong, Modification of energy level alignment for boosting carbon-based CsPbI 2 Br solar cells with 14% certified efficiency. Adv. Func. Mater. 31, 2011187 (2021). https://doi.org/10.1002/adfm.202011187

    Article  CAS  Google Scholar 

  57. D. Bogachuk, S. Zouhair, K. Wojciechowski, B. Yang, V. Babu, L. Wagner, B. Xu, J. Lim, S. Mastroianni, H. Pettersson, A. Hagfeldt, A. Hinsch, Low-temperature carbon-based electrodes in perovskite solar cells. Energy Environ. Sci. 13, 3880–3916 (2020). https://doi.org/10.1039/d0ee02175j

    Article  CAS  Google Scholar 

  58. X. Chen, Y. Xia, Q. Huang, Z. Li, A. Mei, Y. Hu, T. Wang, R. Cheacharoen, Y. Rong, H. Han, Tailoring the dimensionality of hybrid perovskites in mesoporous carbon electrodes for type-ii band alignment and enhanced performance of printable hole-conductor-free perovskite solar cells. Adv. Energy Mater. 11, 2100292 (2021). https://doi.org/10.1002/aenm.202100292

    Article  CAS  Google Scholar 

  59. Z. Liu, M. Zhang, X. Xu, L. Bu, W. Zhang, W. Li, Z. Zhao, M. Wang, Y.-B. Cheng, H. He, p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton Trans. 44, 3967–3973 (2015). https://doi.org/10.1039/C4DT02904F

    Article  CAS  Google Scholar 

  60. X. Xu, Z. Liu, Z. Zuo, M. Zhang, Z. Zhao, Y. Shen, H. Zhou, Q. Chen, Y. Yang, M. Wang, Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett. 15, 2402–2408 (2015). https://doi.org/10.1021/nl504701y

    Article  CAS  Google Scholar 

  61. Z. Ku, Y. Rong, M. Xu, T. Liu, H. Han, Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci. Rep. 3, 3132 (2013). https://doi.org/10.1038/srep03132

    Article  Google Scholar 

  62. S.G. Hashmi, D. Martineau, M.I. Dar, T.T.T. Myllymäki, T. Sarikka, V. Ulla, S.M. Zakeeruddin, M. Grätzel, High performance carbon-based printed perovskite solar cells with humidity assisted thermal treatment. Journal of Materials Chemistry A. 5, 12060–12067 (2017). https://doi.org/10.1039/C7TA04132B

    Article  CAS  Google Scholar 

  63. S.G. Hashmi, D. Martineau, X. Li, M. Ozkan, A. Tiihonen, M.I. Dar, T. Sarikka, S.M. Zakeeruddin, J. Paltakari, P.D. Lund, M. Grätzel, Air processed inkjet infiltrated carbon based printed perovskite solar cells with high stability and reproducibility. Advanced Materials Technologies. 2, 1600183 (2017). https://doi.org/10.1002/admt.201600183

    Article  CAS  Google Scholar 

  64. Y. Hu, S. Si, A. Mei, Y. Rong, H. Liu, X. Li, H. Han, Stable large-area (10 × 10 cm 2) printable mesoscopic perovskite module exceeding 10% efficiency. Solar RRL. 1, 1600019 (2017). https://doi.org/10.1002/solr.201600019

    Article  CAS  Google Scholar 

  65. F. Zhang, X. Yang, M. Cheng, W. Wang, L. Sun, Boosting the efficiency and the stability of low cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode. Nano Energy 20, 108–116 (2016). https://doi.org/10.1016/j.nanoen.2015.11.034

    Article  CAS  Google Scholar 

  66. G. Yue, D. Chen, P. Wang, J. Zhang, Z. Hu, Y. Zhu, Low-temperature prepared carbon electrodes for hole-conductor-free mesoscopic perovskite solar cells. Electrochim. Acta 218, 84–90 (2016). https://doi.org/10.1016/j.electacta.2016.09.112

    Article  CAS  Google Scholar 

  67. C. Zhang, Y. Luo, X. Chen, Y. Chen, Z. Sun, S. Huang, Effective improvement of the photovoltaic performance of carbon-based perovskite solar cells by additional solvents. Nano-Micro Letters. 8, 347–357 (2016). https://doi.org/10.1007/s40820-016-0094-4

    Article  CAS  Google Scholar 

  68. M. Chen, R.-H. Zha, Z.-Y. Yuan, Q.-S. Jing, Z.-Y. Huang, X.-K. Yang, S.-M. Yang, X.-H. Zhao, D.-L. Xu, G.-D. Zou, Boron and phosphorus co-doped carbon counter electrode for efficient hole-conductor-free perovskite solar cell. Chem. Eng. J. 313, 791–800 (2017). https://doi.org/10.1016/j.cej.2016.12.050

    Article  CAS  Google Scholar 

  69. Z. Wei, H. Chen, K. Yan, S. Yang, Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angewandte Chemie - International Edition. 53, 13239–13243 (2014). https://doi.org/10.1002/anie.201408638

    Article  CAS  Google Scholar 

  70. X. Chang, W. Li, L. Zhu, H. Liu, H. Geng, S. Xiang, J. Liu, H. Chen, Carbon-based CsPbBr 3 perovskite solar cells: all-ambient processes and high thermal stability. ACS Appl. Mater. Interfaces. 8, 33649–33655 (2016). https://doi.org/10.1021/acsami.6b11393

    Article  CAS  Google Scholar 

  71. X. Chang, W. Li, H. Chen, L. Zhu, H. Liu, H. Geng, S. Xiang, J. Liu, X. Zheng, Y. Yang, S. Yang, Colloidal precursor-induced growth of ultra-even CH3NH3PbI3 for high-performance paintable carbon-based perovskite solar cells. ACS Appl. Mater. Interfaces. 8, 30184–30192 (2016). https://doi.org/10.1021/acsami.6b09925

    Article  CAS  Google Scholar 

  72. Z. Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang, J. Wang, S. Yang, Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. Energy Environ Sci. 7, 3326–3333 (2014). https://doi.org/10.1039/C4EE01983K

    Article  CAS  Google Scholar 

  73. N. Zhang, Y. Guo, X. Yin, M. He, X. Zou, Spongy carbon film deposited on a separated substrate as counter electrode for perovskite-based solar cell. Mater. Lett. 182, 248–252 (2016). https://doi.org/10.1016/j.matlet.2016.07.004

    Article  CAS  Google Scholar 

  74. S.G. Hashmi, A. Tiihonen, D. Martineau, M. Ozkan, P. Vivo, K. Kaunisto, V. Ulla, S.M. Zakeeruddin, M. Grätzel, Long term stability of air processed inkjet infiltrated carbon-based printed perovskite solar cells under intense ultra-violet light soaking. Journal of Materials Chemistry A. 5, 4797–4802 (2017). https://doi.org/10.1039/C6TA10605F

    Article  CAS  Google Scholar 

  75. Y. Yang, H. Chen, X. Zheng, X. Meng, T. Zhang, C. Hu, Nano Energy Ultrasound-spray deposition of multi-walled carbon nanotubes on NiO nanoparticles-embedded perovskite layers for high-performance carbon- based perovskite solar cells. Nano Energy 42, 322–333 (2017). https://doi.org/10.1016/j.nanoen.2017.11.003

    Article  CAS  Google Scholar 

  76. T. Bu, L. Wu, X. Liu, X. Yang, P. Zhou, X. Yu, T. Qin, J. Shi, S. Wang, S. Li, Z. Ku, Y. Peng, F. Huang, Q. Meng, Y.-B. Cheng, J. Zhong, Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Adv. Energy Mater. 7, 1700576 (2017). https://doi.org/10.1002/aenm.201700576

    Article  CAS  Google Scholar 

  77. F. Yang, G. Kapil, P. Zhang, Z. Hu, M.A. Kamarudin, T. Ma, S. Hayase, Dependence of acetate-based antisolvents for high humidity fabrication of CH3NH3PbI3 perovskite devices in ambient atmosphere. ACS Appl. Mater. Interfaces. 10, 16482–16489 (2018). https://doi.org/10.1021/acsami.8b02554

    Article  CAS  Google Scholar 

  78. X. Zheng, Z. Wei, H. Chen, Q. Zhang, H. He, S. Xiao, Z. Fan, K.S. Wong, S. Yang, Designing nanobowl arrays of mesoporous TiO 2 as an alternative electron transporting layer for carbon cathode-based perovskite solar cells. Nanoscale 8, 6393–6402 (2016). https://doi.org/10.1039/C5NR06715D

    Article  CAS  Google Scholar 

  79. H. Jiang, X. Liu, N. Chai, F. Huang, Y. Peng, J. Zhong, Q. Zhang, Z. Ku, Y. Cheng, Alleviate the J – V hysteresis of carbon-based perovskite solar cells via introducing additional methylammonium chloride into MAPbI 3 precursor. RSC Adv. 8, 35157–35161 (2018). https://doi.org/10.1039/C8RA04347G

    Article  CAS  Google Scholar 

  80. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014). https://doi.org/10.1038/ncomms6784

    Article  CAS  Google Scholar 

Download references

Funding

P. G. acknowledges the National Natural Science Foundation of China (grant no. 21975260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Gao.

Ethics declarations

Ethics approval

All authors read the manuscript and approved the submission.

Conflict of interest

The authors declare no competing interests.

Additional information

Lusheng Liang and Yu Cai are contributed equally to this work

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1095 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Cai, Y. & Gao, P. A facile gas-driven ink spray (GDIS) deposition strategy toward hole-conductor-free carbon-based perovskite solar cells. emergent mater. 5, 967–975 (2022). https://doi.org/10.1007/s42247-021-00247-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00247-w

Keywords

Navigation