Skip to main content
Log in

Structural, Optical and Electrical Properties of PVA/PEO/SnO2 New Nanocomposites for Flexible Devices

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Fabrication of polyvinyl alcohol (PVA)–polyethylene oxide (PEO) blend doped with tin dioxide (SnO2) nanocomposites has been investigated for flexible electrical and optical applications. The prepared nanocomposites have low cost, lightweight, flexible, high corrosion resistance, good optical and electrical properties. These properties of fabricated nanocomposites make it useful for different optoelectronics applications such as: sensors, solar cells, transistors, diodes, capacitors, energy storage etc. The structural, optical and electrical properties of (PVA–PEO–SnO2) nanocomposites have been studied. The experimental results of optical properties for (PVA–PEO–SnO2) nanocomposites showed that the nanocomposites have higher absorbance in UV region at wavelength range (200–280) nm. This behavior makes the nanocomposites may be used for optoelectronics applications. The absorbance, absorption coefficient, extinction coefficient, refractive index, real and imaginary dielectric constants and optical conductivity of polymer blend are increased with the increase in SnO2 nanoparticles concentrations while the transmittance and energy band gap are decreased with the increase in SnO2 nanoparticles concentrations. The decrease in energy band gap is useful for different optoelectronics devices industries. Also, the results showed that the dielectric constant and dielectric loss decrease while the conductivity increases with the increase in frequency. The dielectric constant, dielectric loss and conductivity are increased with the increase in SnO2 nanoparticles concentrations. The electrical properties showed that the (PVA–PEO–SnO2) nanocomposites have good dielectric parameters which it may be used for different electronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M.H.A. Rehim, J. Alhamidi, TiO2/polymer nanocomposites for antibacterial packaging applications. J. Adv. Food Technol. 1(1), 1–8 (2018)

    Google Scholar 

  2. M. Aslam, M.A. Kalyar, Z.A. Raza, Polyvinyl alcohol: a review of research status and use of polyvinyl alcohol based nanocomposites. Polym. Eng. Sci. (2018). https://doi.org/10.1002/pen.24855

    Article  Google Scholar 

  3. S.K. Shahenoor Basha, K. Vijay Kumar, G. Sunita Sundari, M. C. Rao, Structural and electrical properties of graphene oxide-doped PVA/PVP blend nanocomposite polymer films. Adv. Mater. Sci. Eng. 2018, Article ID 4372365, 11 (2018)

  4. L.A. Abdelwahab, A. El-Hag Ali, R.A. Zaghlool, N.A. Mohsen, Dielectric properties, impedance analysis, and electrical conductivity of Ag doped radiation grafted polypropylene. Egypt. J. Rad. Sci. Appl. 30(1), 95–107 (2017)

    Article  Google Scholar 

  5. A. Hashim, M.A. Habeeb, Structural and optical properties of (biopolymer blend-metal oxide) bionanocomposites for humidity sensors. J. Bionanosci. 12(5), 660–663 (2018)

    Article  CAS  Google Scholar 

  6. L.I. Nadaf, K.S. Venkatesh, M.A. Gadyal, M. Afzal, Polyaniline-tin oxide nanocomposites : synthesis and characterization. IOSR J. Appl. Chem. 9(2), 55–61 (2016)

    CAS  Google Scholar 

  7. A. Hashim, A. Hadi, Novel pressure sensors made from nanocomposites (biodegradable polymers–metal oxide nanoparticles): fabrication and characterization. Ukr. J. Phys. (2018). https://doi.org/10.15407/ujpe63.8.754

    Article  Google Scholar 

  8. A. Hashim, Q. Hadi, Novel of (niobium carbide/polymer blend) nanocomposites: fabrication and characterization for pressure sensor. Sens. Lett. (2017). https://doi.org/10.1166/sl.2017.3892

    Article  Google Scholar 

  9. A. Hashim, M.A. Habeeb, A. Hadi, Q.M. Jebur, W. Hadi, Fabrication of novel (PVA–PEG–CMC–Fe3O4) magnetic nanocomposites for piezoelectric applications. Sens. Lett. (2017). https://doi.org/10.1166/sl.2018.3935

    Article  Google Scholar 

  10. A. Hashim, Z.S. Hamad, Fabrication and characterization of polymer blend doped with metal carbide nanoparticles for humidity sensors. J. Nanostruct. 9(2), 340–348 (2019). https://doi.org/10.22052/JNS.2019.02.016

    Article  CAS  Google Scholar 

  11. D. Hassan, A.H. Ah-Yasari, Fabrication and studying the dielectric properties of (polystyrene-copper oxide) nanocomposites for piezoelectric application. Bull. Electr. Eng. Inform. (2019). https://doi.org/10.11591/eei.v8i1.1019

    Article  Google Scholar 

  12. M.A. Habbeb, A. Hashim, A.R.K. AbidAli, The dielectric properties for (PMMA-LiF) composites. Eur. J. Sci. Res. 61(3), 367–371 (2011)

    Google Scholar 

  13. H. Abduljalil, A. Hashim, A. Jewad, The effect of addition titanium dioxide on electrical properties of poly-methyl methacrylate. Eur. J. Sci. Res. 63(2), 231–235 (2011)

    Google Scholar 

  14. Z. Al-Ramadhan, A. Hashim, A.J.K. Algidsawi, The DC electrical properties of (PVC-Al2O3) composites. AIP Conf. Proc. (2011). https://doi.org/10.1063/1.3663109

    Article  Google Scholar 

  15. A. Hashim, A. Hadi, Synthesis and characterization of novel piezoelectric and energy storage nanocomposites: biodegradable materials–magnesium oxide nanoparticles. Ukr. J. Phys. (2017). https://doi.org/10.15407/ujpe62.12.1050

    Article  Google Scholar 

  16. B.H. Rabee, A. Hashim, Synthesis and characterization of carbon nanotubes -polystyrene composites. Eur. J. Sci. Res. 60(2), 247–254 (2011)

    Google Scholar 

  17. A. Hashim, H. Abduljalil, H. Ahmed, Analysis of optical, electronic and spectroscopic properties of (biopolymer-SiC) nanocomposites for electronics applications. Egypt. J. Chem. (2019). https://doi.org/10.21608/EJCHEM.2019.7154.1590

    Article  Google Scholar 

  18. A. Hashim, M.A. Habeeb, A. Khalaf, A. Hadi, Fabrication of (PVA–PAA) blend-extracts of plants bio-composites and studying their structural. Electr. Opt. Prop. Hum. Sens. Appl. Sens. Lett. 15, 589–596 (2017). https://doi.org/10.1166/sl.2017.3856

    Article  Google Scholar 

  19. S. Hadi, A. Hashim, A. Jewad, Optical properties of (PVA–LiF) composites. Aust. J. Basic Appl. Sci. 5(9), 2192–2195 (2011)

    CAS  Google Scholar 

  20. Q.M. Jebur, A. Hashim, M.A. Habeeb, Structural, electrical and optical properties for (polyvinyl alcohol-polyethylene oxide–magnesium oxide) nanocomposites for optoelectronics applications. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00121-x

    Article  Google Scholar 

  21. F.A. Jasim, A. Hashim, A.G. Hadi, F. Lafta, S.R. Salman, H. Ahmed, Preparation of (pomegranate peel-polystyrene) composites and study their optical properties. Res. J. Appl. Sci. 8(9), 439–441 (2013)

    CAS  Google Scholar 

  22. F.A. Jasim, F. Lafta, A. Hashim, M. Ali, A.G. Hadi, Characterization of palm fronds-polystyrene composites. J. Eng. Appl. Sci. 8(5), 140–142 (2013)

    CAS  Google Scholar 

  23. I.R. Agool, F.S. Mohammed, A. Hashim, The effect of magnesium oxide nanoparticles on the optical and dielectric properties of (PVA–PAA–PVP) blend. Adv. Environ. Biol. 9(11), 1–11 (2015)

    CAS  Google Scholar 

  24. F.L. Rashid, A. Hashim, M.A. Habeeb, S.R. Salman, H. Ahmed, Preparation of PS-PMMA copolymer and study the effect of sodium fluoride on its optical properties. J. Eng. Appl. Sci. 8(5), 137–139 (2013)

    CAS  Google Scholar 

  25. A. Hazim, H.M. Abduljalil, A. Hashim, Analysis of structural and electronic properties of novel (PMMA/Al2O3, PMMA/Al2O3-Ag, PMMA/ZrO2, PMMA/ZrO2-Ag, PMMA-Ag) nanocomposites for low cost electronics and optics applications. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00148-0

    Article  Google Scholar 

  26. H. Ahmed, A. Hashim, Fabrication of novel (PVA/NiO/SiC) nanocomposites, structural, electronic and optical properties for humidity sensors. Int. J. Sci. Technol. Res. 8(11), 1 (2019)

    Google Scholar 

  27. A. Hashim, A. Jassim, Novel of biodegradable polymers-inorganic nanoparticles: structural, optical and electrical properties as humidity sensors and gamma radiation shielding for biological applications. J. Bionanosci. (2018). https://doi.org/10.1166/jbns.2018.1518

    Article  Google Scholar 

  28. A. Hashim, M.A. Habeeb, A. Hadi, Synthesis of novel polyvinyl alcohol–starch-copper oxide nanocomposites for humidity sensors applications with different temperatures. Sens. Lett. 15(9), 758–761 (2017). https://doi.org/10.1166/sl.2017.3876

    Article  Google Scholar 

  29. A. Hadi, A. Hashim, Development of a new humidity sensor based on (carboxymethyl cellulose–starch) blend with copper oxide nanoparticles. Ukr. J. Phys. (2017). https://doi.org/10.15407/ujpe62.12.1044

    Article  Google Scholar 

  30. A. Hashim, A. Hadi, Synthesis and characterization of (MgO-Y2O3-CuO) nanocomposites for novel humidity sensor application. Sens. Lett. (2017). https://doi.org/10.1166/sl.2017.3900

    Article  Google Scholar 

  31. A. Hashim, A. Jassim, Novel of (PVA–ST–PbO2) bio nanocomposites: preparation and properties for humidity sensors and radiation shielding applications. Sens. Lett. (2017). https://doi.org/10.1166/sl.2018.3915

    Article  Google Scholar 

  32. H. Ahmed, H.M. Abduljalil, A. Hashim, Structural, optical and electronic properties of novel (PVA–MgO)/SiC nanocomposites films for humidity sensors. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00111-z

    Article  Google Scholar 

  33. H. Ahmed, H.M. Abduljalil, A. Hashim, Analysis of structural, optical and electronic properties of polymeric nanocomposites/silicon carbide for humidity sensors. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00100-2

    Article  Google Scholar 

  34. A. Hashim, Y. Al-Khafaji, A. Hadi, Synthesis and characterization of flexible resistive humidity sensors based on PVA/PEO/CuO nanocomposites. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00145-3

    Article  Google Scholar 

  35. A. Hashim, N. Hamid, Fabrication and properties of biopolymer-ceramics nanocomposites as UV-shielding for bionanoscience application. J. Bionanosci. (2018). https://doi.org/10.1166/jbns.2018.1591

    Article  Google Scholar 

  36. A. Hashim, Z.S. Hamad, Novel of (niobium carbide-biopolymer blend) nanocomposites: characterization for bioenvironmental applications. J. Bionanosci. (2018). https://doi.org/10.1166/jbns.2018.1551

    Article  Google Scholar 

  37. D. Hassan, A. Hashim, Preparation and studying the structural and optical properties of (poly-methyl methacrylate-lead oxide) nanocomposites for bioenvironmental applications. J. Bionanosci. (2018). https://doi.org/10.1166/jbns.2018.1537

    Article  Google Scholar 

  38. A. Hashim, K.H.H. Al-Attiyah, S.F. Obaid, Fabrication of novel (biopolymer blend-lead oxide nanoparticles) nanocomposites: structural and optical properties for low cost nuclear radiation shielding. Ukr. J. Phys. (2019). https://doi.org/10.15407/ujpe64.2.157

    Article  Google Scholar 

  39. A. Hashim, A. Hashim, Structural and optical properties of (polystyrene-copper oxide) nanocomposites for biological applications. J. Bionanosci. (2018). https://doi.org/10.1166/jbns.2018.1533

    Article  Google Scholar 

  40. K.H.H. Al-Attiyah, A. Hashim, S.F. Obaid, Fabrication of novel (carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol)/lead oxide nanoparticles: structural and optical properties for gamma rays shielding applications. Int. J. Plast. Technol. (2019). https://doi.org/10.1007/s12588-019-09228-5

    Article  Google Scholar 

  41. A. Hashim, Z.S. Hamad, Synthesis, characterization and nanobiological application of (biodegradable polymers-titanium nitride) nanocomposites. J. Bionanosci. (2018). https://doi.org/10.1166/jbns.2018.1561

    Article  Google Scholar 

  42. A. Hashim, A. Hadi, Novel lead oxide polymer nanocomposites for nuclear radiation shielding applications. Ukr. J. Phys. (2017). https://doi.org/10.15407/ujpe62.11.0978

    Article  Google Scholar 

  43. K.H.H. Al-Attiyah, A. Hashim, S.F. Obaid, Synthesis of new nanocomposites: carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol/lead oxide nanoparticles: structural and electrical properties as gamma ray sensor for bioenvironmental applications. J. Bionanosci. (2018). https://doi.org/10.1166/jbns.2018.1526

    Article  Google Scholar 

  44. H. Ahmed, A. Hashim, H.M. Abduljalil, Analysis of structural, electrical and electronic properties of (polymer nanocomposites/silicon carbide) for antibacterial application. Egypt. J. Chem. 62(4), 1167–1176 (2019). https://doi.org/10.21608/EJCHEM.2019.6241.1522

    Article  Google Scholar 

  45. A. Hashim, I.R. Agool, K.J. Kadhim, Modern developments in polymer nanocomposites for antibacterial and antimicrobial applications: a review. J. Bionanosci. (2018). https://doi.org/10.1166/jbns.2018.1580

    Article  Google Scholar 

  46. N.H. Al-Garah, F.L. Rashid, A. Hadi, A. Hashim, Synthesis and characterization of novel (organic–inorganic) nanofluids for antibacterial, antifungal and heat transfer applications. J. Bionanosci. (2018). https://doi.org/10.1166/jbns.2018.1538

    Article  Google Scholar 

  47. K.J. Kadhim, I.R. Agool, A. Hashim, Synthesis of (PVA–PEG–PVP–TiO2) nanocomposites for antibacterial application. Mater. Focus (2016). https://doi.org/10.1166/mat.2016.1371

    Article  Google Scholar 

  48. K.J. Kadhim, I.R. Agool, A. Hashim, Effect of zirconium oxide nanoparticles on dielectric properties of (PVA–PEG–PVP) blend for medical application. J. Adv. Phys. (2017). https://doi.org/10.1166/jap.2017.1313

    Article  Google Scholar 

  49. F.L. Rashid, S.M. Talib, A. Hadi, A. Hashim, Novel of thermal energy storage and release: water/(SnO2-TaC) and water/(SnO2–SiC) nanofluids for environmental applications. IOP Conf. Ser. Mater. Sci. Eng. 454, 012113 (2018). https://doi.org/10.1088/1757-899x/454/1/012113

    Article  CAS  Google Scholar 

  50. A. Hadi, F.L. Rashid, H.Q. Hussein, A. Hashim, Novel of water with (CeO2-WC) and (SiC-WC) nanoparticles systems for energy storage and release applications. IOP Conf. Ser. Mater. Sci. Eng. 518(3), 5 (2019). https://doi.org/10.1088/1757-899X/518/3/032059

    Article  Google Scholar 

  51. F.L. Rashid, A. Hadi, N.H. Al-Garah, A. Hashim, Novel phase change materials, MgO nanoparticles, and water based nanofluids for thermal energy storage and biomedical applications. Int. J. Pharm. Phytopharmacol. Res. 8, 46–56 (2018)

    CAS  Google Scholar 

  52. I.R. Agool, K.J. Kadhim, A. Hashim, Synthesis of (PVA–PEG–PVP–ZrO2) nanocomposites for energy release and gamma shielding applications. Int. J. Plast. Technol. (2017). https://doi.org/10.1007/s12588-017-9196-1

    Article  Google Scholar 

  53. T. Siddaiah, P. Ojha, N.O. Kumar, C. Ramu, Structural, optical and thermal characterizations of PVA/MAA:EA polyblend films. Mater. Res. (2018). https://doi.org/10.1590/1980-5373-mr-2017-0987

    Article  Google Scholar 

  54. A.Y. Fasasi, E. Osagie, D. Pelemo, E. Obiajunwa, E. Ajenifuja, J. Ajao, G. Osinkolu, W.O. Makinde, A.E. Adeoye, Effect of precursor solvents on the optical properties of copper oxide thin films deposited using spray pyrolysis for optoelectronic applications. Am. J. Mater. Synth. Process. 3, 12–22 (2018)

    Google Scholar 

  55. M. Banerjee, A. Jain, G.S. Mukherjee, Spectroscopic evaluation of optical parameters of a transition metal salt filled polymer material. Def. Sci. J. 68(2), 225 (2018)

    Article  CAS  Google Scholar 

  56. Ah Salama, A.M. Abdel-Karim, Synthesis, characterization and dielectric properties of novel metal oxide—phthalocyanine nanocomposites. Egypt. J. Chem. 61(2), 281–294 (2018)

    Article  Google Scholar 

  57. S.M. Ambalagi, M. Devendrappa, S. Nagaraja, B. Sannakki, Dielectric properties of PANI/CuO nanocomposites. IOP Conf. Ser. Mater. Sci. Eng. (2018). https://doi.org/10.1088/1757-899x/310/1/012081

    Article  Google Scholar 

  58. S.K. ShahenoorBasha, K. VijayKumar, G. SunitaSundari, M.C. Rao, Structural and electrical properties of graphene oxide-doped PVA/PVP blend nanocomposite polymer films. Adv. Mater. Sci. Eng. (2018). https://doi.org/10.1155/2018/4372365

    Article  Google Scholar 

  59. G. Kanimozhi, S. Vinoth, H. Kumar, E.S. Srinadhu, N. Satyanarayana, Conductivity and dielectric permittivity studies of kibased nanocomposite (PEO/PMMA/KI/I2/ZnO Nanorods) polymer solid electrolytes. Polym. Compos. (2018). https://doi.org/10.1002/pc.25123

    Article  Google Scholar 

  60. A. Hashim, M.A. Habeeb, Synthesis and characterization of polymer blend-CoFe2O4 nanoparticles as a humidity sensors for different temperatures. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-018-0081-1

    Article  Google Scholar 

  61. I.R. Agool, K.J. Kadhim, A. Hashim, Fabrication of new nanocomposites: (PVA–PEG–PVP) blend-zirconium oxide nanoparticles) for humidity sensors. Int. J. Plast. Technol. (2017). https://doi.org/10.1007/s12588-017-9192-5

    Article  Google Scholar 

  62. A. Hashim, Q. Hadi, Structural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensors. J. Mater. Sci. Mater. Electron. 29, 11598–11604 (2018). https://doi.org/10.1007/s10854-018-9257-z

    Article  CAS  Google Scholar 

  63. A. Hashim, Q. Hadi, Synthesis of novel (polymer blend-ceramics) nanocomposites: structural, optical and electrical properties for humidity sensors. J. Inorg. Organomet. Polym Mater. 28(4), 1394–1401 (2018). https://doi.org/10.1007/s10904-018-0837-4

    Article  CAS  Google Scholar 

  64. A. Hashim, I.R. Agool, K.J. Kadhim, Novel of (polymer blend-Fe3O4) magnetic nanocomposites: preparation and characterization for thermal energy storage and release, gamma ray shielding, antibacterial activity and humidity sensors applications. J. Mater. Sci. Mater. Electron. 29(12), 10369–10394 (2018). https://doi.org/10.1007/s10854-018-9095-z

    Article  CAS  Google Scholar 

  65. S. Hegde, V. Ravindrachary, S.D. Praveena, B. Guruswamy, R.N. Sagar, Optical and dielectric properties of Li + ion conducting solid polymer electrolyte. Indian J. Adv. Chem. Sci. (2018). https://doi.org/10.1007/2Fs11581-019-03383-w

    Article  Google Scholar 

  66. A. Hashim, A. Hadi, A novel piezoelectric materials prepared from (carboxymethyl cellulose-starch) blend-metal oxide nanocomposites. Sens. Lett. (2017). https://doi.org/10.1166/sl.2017.3910

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hashim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadi, A., Hashim, A. & Al-Khafaji, Y. Structural, Optical and Electrical Properties of PVA/PEO/SnO2 New Nanocomposites for Flexible Devices. Trans. Electr. Electron. Mater. 21, 283–292 (2020). https://doi.org/10.1007/s42341-020-00189-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-020-00189-w

Keywords

Navigation