Skip to main content
Log in

Nonlinear Vibration Analysis of Sigmoid Functionally Graded Sandwich Plate with Ceramic-FGM-Metal Layers

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

In the present study, free and forced nonlinear vibration characteristics of a sandwich functionally graded material (FGM) plate resting on Pasternak elastic foundation have been investigated. The formulation is based on non-polynomial higher-order shear deformation theory with inverse hyperbolic shape function. A new modified sigmoid law is presented to compute the effective material properties of sandwich FGM plate.

Methods

The governing equilibrium equations have been formulated using Hamilton’s principle and the governing nonlinear coupled ordinary differential equations are derived using stress function method in conjunction with Galerkin approach. The resulting equations are then solved using fourth order Runge–Kutta time integration scheme for simply supported plate with immovable edges.

Results

Comprehensive parametric studies have been performed to analyze the influence of geometric configuration, volume fraction exponent, and elastic medium parameter on nonlinear time series analysis for different configurations of sandwich plate. A nonlinear complex behaviour of the plate is studied using time displacement response, phase-plane plot and Poincaré map.

Conclusion

For Pasternak foundation, system shows multi-loop periodic nature while it losses its periodicity and shows the quasi-periodic nature for Winkler foundation. In addition, it has been observed that the system shows quasi-periodic route to chaotic nature for thick plate to thin plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Koizumi M, Niino M (1995) Overview of FGM research in Japan. MRS Bull 20:19–21. https://doi.org/10.1557/S0883769400048867

    Article  Google Scholar 

  2. Mortensen A, Suresh S (1995) Functionally graded metals and metal-ceramic composites.1. Processing. Int Mater Rev 40:239–265. https://doi.org/10.1179/imr.1995.40.6.239

    Article  Google Scholar 

  3. Hosseini-Hashemi S, Fadaee M, Atashipour SR (2011) Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure. Compos Struct 93:722–735. https://doi.org/10.1016/j.compstruct.2010.08.007

    Article  Google Scholar 

  4. Wang CM, Reddy JN, Lee KH (2000) Shear deformable beams and plates. Shear Deform Beams Plates. https://doi.org/10.1016/b978-008043784-2/50000-9

    Article  MATH  Google Scholar 

  5. Zenkour AM (2005) A comprehensive analysis of functionally graded sandwich plates: part 2-Buckling and free vibration. Int J Solids Struct 42:5243–5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016

    Article  MATH  Google Scholar 

  6. Jha DK, Kant T, Singh RK (2013) Free Vibration of functionally graded plates with a higher-order shear and normal deformation theory. Int J Struct Stab Dyn 13:1350004. https://doi.org/10.1142/S0219455413500041

    Article  MathSciNet  MATH  Google Scholar 

  7. El Meiche N, Tounsi A, Ziane N et al (2011) A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate. Int J Mech Sci 53:237–247. https://doi.org/10.1016/j.ijmecsci.2011.01.004

    Article  Google Scholar 

  8. Thai HT, Vo TP (2013) A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates. Appl Math Model 37:3269–3281. https://doi.org/10.1016/j.apm.2012.08.008

    Article  MathSciNet  MATH  Google Scholar 

  9. Thai HT, Choi DH (2013) Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos Struct 95:142–153. https://doi.org/10.1016/j.compstruct.2012.08.023

    Article  Google Scholar 

  10. Nguyen T-K (2015) A higher-order hyperbolic shear deformation plate model for analysis of functionally graded materials. Int J Mech Mater Des. https://doi.org/10.1007/s10999-014-9260-3

    Article  Google Scholar 

  11. Reddy JN (2000) Analysis of functionally graded plates. Int J Numer Methods Eng 47:663–684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3%3c663:AID-NME787%3e3.0.CO;2-8

    Article  MATH  Google Scholar 

  12. Joshan YS, Grover N, Singh BN (2017) A new non-polynomial four variable shear deformation theory in axiomatic formulation for hygro-thermo-mechanical analysis of laminated composite plates. Compos Struct 182:685–693. https://doi.org/10.1016/j.compstruct.2017.09.029

    Article  Google Scholar 

  13. Woo J, Meguid SA, Ong LS (2006) Nonlinear free vibration behavior of functionally graded plates. J Sound Vib 289:595–611. https://doi.org/10.1016/j.jsv.2005.02.031

    Article  Google Scholar 

  14. Sundararajan N, Prakash T, Ganapathi M (2005) Nonlinear free flexural vibrations of functionally graded rectangular and skew plates under thermal environments. Finite Elem Anal Des 42:152–168. https://doi.org/10.1016/j.finel.2005.06.001

    Article  Google Scholar 

  15. Gupta A, Talha M (2017) Large amplitude free flexural vibration analysis of finite element modeled FGM plates using new hyperbolic shear and normal deformation theory. Aerosp Sci Technol 67:287–308. https://doi.org/10.1016/j.ast.2017.04.015

    Article  Google Scholar 

  16. Park JS, Kim JH (2006) Thermal postbuckling and vibration analyses of functionally graded plates. J Sound Vib 289:77–93. https://doi.org/10.1016/j.jsv.2005.01.031

    Article  MATH  Google Scholar 

  17. Praveen GN, Reddy JN (1998) Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. Int J Solids Struct 35:4457–4476. https://doi.org/10.1016/S0020-7683(97)00253-9

    Article  MATH  Google Scholar 

  18. Akay HU (1980) Dynamic large deflection analysis of plates using mixed finite elements. Comput Struct 11:1–11. https://doi.org/10.1016/0045-7949(80)90142-X

    Article  MATH  Google Scholar 

  19. Liew KM, He XQ, Ng TY, Sivashanker S (2001) Active control of FGM plates subjected to a temperature gradient: modelling via finite element method based on FSDT. Int J Numer Methods Eng 52:1253–1271. https://doi.org/10.1002/nme.252

    Article  MATH  Google Scholar 

  20. Yang J, Shen HS (2002) Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments. J Sound Vib 255:579–602. https://doi.org/10.1006/jsvi.2001.4161

    Article  Google Scholar 

  21. Jung W-Y, Han S-C, Park W-T (2016) Four-variable refined plate theory for forced-vibration analysis of sigmoid functionally graded plates on elastic foundation. Int J Mech Sci 111–112:73–87. https://doi.org/10.1016/j.ijmecsci.2016.03.001

    Article  Google Scholar 

  22. Akbarzadeh AH, Abbasi M, Hosseini Zad SK, Eslami MR (2011) Dynamic analysis of functionally graded plates using the hybrid Fourier–Laplace transform under thermomechanical loading. Meccanica 46:1373–1392. https://doi.org/10.1007/s11012-010-9397-6

    Article  MathSciNet  MATH  Google Scholar 

  23. Amabili M (2008) Nonlinear vibrations and stability of shells and plates. Cambridge University Press

  24. Duc ND (2014) Nonlinear static and dynamic stability of functionally graded plates and shells. Vietnam National University Press, Hanoi, Vietnam

    Google Scholar 

  25. Amabili M (2004) Nonlinear vibrations of rectangular plates with different boundary conditions: theory and experiments. Comput Struct 82:2587–2605. https://doi.org/10.1016/j.compstruc.2004.03.077

    Article  Google Scholar 

  26. Amabili M, Carra S (2009) Thermal effects on geometrically nonlinear vibrations of rectangular plates with fixed edges. J Sound Vib 321:936–954. https://doi.org/10.1016/j.jsv.2008.10.004

    Article  Google Scholar 

  27. Amabili M (2016) Nonlinear vibrations of viscoelastic rectangular plates. J Sound Vib 362:142–156. https://doi.org/10.1016/j.jsv.2015.09.035

    Article  Google Scholar 

  28. Duc ND, Cong PH (2013) Nonlinear postbuckling of symmetric S-FGM plates resting on elastic foundations using higher order shear deformation plate theory in thermal environments. Compos Struct 100:566–574. https://doi.org/10.1016/j.compstruct.2013.01.006

    Article  Google Scholar 

  29. Dinh Duc N, Tuan ND, Tran P, Quan TQ (2017) Nonlinear dynamic response and vibration of imperfect shear deformable functionally graded plates subjected to blast and thermal loads. Mech Adv Mater Struct 24:318–329. https://doi.org/10.1080/15376494.2016.1142024

    Article  Google Scholar 

  30. Huang X-L, Shen H-S (2004) Nonlinear vibration and dynamic response of functionally graded plates in thermal environments. Int J Solids Struct 41:2403–2427. https://doi.org/10.1016/j.ijsolstr.2003.11.012

    Article  MATH  Google Scholar 

  31. Upadhyay AK, Shukla KK (2013) Geometrically nonlinear static and dynamic analysis of functionally graded skew plates. Commun Nonlinear Sci Numer Simul 18:2252–2279. https://doi.org/10.1016/j.cnsns.2012.12.034

    Article  MathSciNet  MATH  Google Scholar 

  32. Hao YX, Zhang W, Yang J, Li SY (2011) Nonlinear dynamic response of a simply supported rectangular functionally graded material plate under the time-dependent thermalmechanical loads. J Mech Sci Technol 25:1637–1646. https://doi.org/10.1007/s12206-011-0501-1

    Article  Google Scholar 

  33. Dinh Duc N, Hong Cong P (2015) Nonlinear vibration of thick FGM plates on elastic foundation subjected to thermal and mechanical loads using the first-order shear deformation plate theory. Cogent Eng 2:1–17. https://doi.org/10.1080/23311916.2015.1045222

    Article  Google Scholar 

  34. Alijani F, Bakhtiari-Nejad F, Amabili M (2011) Nonlinear vibrations of FGM rectangular plates in thermal environments. Nonlinear Dyn 66:251–270. https://doi.org/10.1007/s11071-011-0049-8

    Article  MathSciNet  MATH  Google Scholar 

  35. Neves AMA, Ferreira AJM, Carrera E et al (2013) Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Compos Part B Eng 44:657–674. https://doi.org/10.1016/j.compositesb.2012.01.089

    Article  Google Scholar 

  36. Bessaim A, Houari MSA, Tounsi A et al (2013) A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets. J Sandw Struct Mater 15:671–703. https://doi.org/10.1177/1099636213498888

    Article  Google Scholar 

  37. Bennoun M, Houari MSA, Tounsi A (2016) A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates. Mech Adv Mater Struct 23:423–431. https://doi.org/10.1080/15376494.2014.984088

    Article  Google Scholar 

  38. Natarajan S, Manickam G (2012) Bending and vibration of functionally graded material sandwich plates using an accurate theory. Finite Elem Anal Des 57:32–42. https://doi.org/10.1016/j.finel.2012.03.006

    Article  Google Scholar 

  39. Nguyen VH, Nguyen TK, Thai HT, Vo TP (2014) A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates. Compos Part B Eng 66:233–246. https://doi.org/10.1016/j.compositesb.2014.05.012

    Article  Google Scholar 

  40. Thai HT, Nguyen TK, Vo TP, Lee J (2014) Analysis of functionally graded sandwich plates using a new first-order shear deformation theory. Eur J Mech A/Solids 45:211–225. https://doi.org/10.1016/j.euromechsol.2013.12.008

    Article  MathSciNet  MATH  Google Scholar 

  41. Meziane MAA, Abdelaziz HH, Tounsi A (2014) An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions. J Sandw Struct Mater 16:293–318. https://doi.org/10.1177/1099636214526852

    Article  Google Scholar 

  42. Sobhy M (2013) Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Compos Struct 99:76–87. https://doi.org/10.1016/j.compstruct.2012.11.018

    Article  Google Scholar 

  43. Han SC, Park WT, Jung WY (2015) A four-variable refined plate theory for dynamic stability analysis of S-FGM plates based on physical neutral surface. Compos Struct 131:1081–1089. https://doi.org/10.1016/j.compstruct.2015.06.025

    Article  Google Scholar 

  44. Fazzolari FA (2016) Modal characteristics of P- and S-FGM plates with temperature-dependent materials in thermal environment. J Therm Stress 39:854–873. https://doi.org/10.1080/01495739.2016.1189772

    Article  Google Scholar 

  45. Lee WH, Han SC, Park WT (2015) A refined higher order shear and normal deformation theory for E-, P-, and S-FGM plates on Pasternak elastic foundation. Compos Struct 122:330–342. https://doi.org/10.1016/j.compstruct.2014.11.047

    Article  Google Scholar 

  46. Beldjelili Y, Tounsi A, Mahmoud SR (2016) Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory. Smart Struct Syst 18:755–786. https://doi.org/10.12989/sss.2016.18.4.755

    Article  Google Scholar 

  47. Jung WY, Park WT, Han SC (2014) Bending and vibration analysis of S-FGM microplates embedded in Pasternak elastic medium using the modified couple stress theory. Int J Mech Sci 87:150–162. https://doi.org/10.1016/j.ijmecsci.2014.05.025

    Article  Google Scholar 

  48. Duc ND, Cong PH (2015) Nonlinear dynamic response of imperfect symmetric thin sigmoid-functionally graded material plate with metal-ceramic-metal layers on elastic foundation. JVC/J Vib Control 21:637–646. https://doi.org/10.1177/1077546313489717

    Article  Google Scholar 

  49. Singh SJ, Harsha SP (2019) Exact solution for free vibration and buckling of sandwich S-FGM plates on pasternak elastic foundation with various boundary conditions. Int J Struct Stab Dyn 19:S0219455419500287. https://doi.org/10.1142/S0219455419500287

    Article  MathSciNet  Google Scholar 

  50. Nguyen DD (2018) Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations. J Sandw Struct Mater 20:351–378. https://doi.org/10.1177/1099636216653266

    Article  Google Scholar 

  51. Duc ND, Tuan ND, Tran P et al (2015) Nonlinear dynamic analysis of Sigmoid functionally graded circular cylindrical shells on elastic foundations using the third order shear deformation theory in thermal environments. Int J Mech Sci 101–102:338–348. https://doi.org/10.1016/j.ijmecsci.2015.08.018

    Article  Google Scholar 

  52. Dogan V (2013) Nonlinear vibration of FGM plates under random excitation. Compos Struct 95:366–374. https://doi.org/10.1016/j.compstruct.2012.07.024

    Article  Google Scholar 

  53. Dinh Duc N, Hong Cong P (2018) Nonlinear thermo-mechanical dynamic analysis and vibration of higher order shear deformable piezoelectric functionally graded material sandwich plates resting on elastic foundations. J Sandw Struct Mater 20:191–218. https://doi.org/10.1177/1099636216648488

    Article  Google Scholar 

  54. Duc ND, Bich DH, Cong PH (2016) Nonlinear thermal dynamic response of shear deformable FGM plates on elastic foundations. J Therm Stress 39:278–297. https://doi.org/10.1080/01495739.2015.1125194

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Harsha.

Appendix

Appendix

$$\begin{aligned} \kappa_{11} &= \frac{1}{{1 - \nu^{2} }}\left( {\frac{{B^{2} }}{A} - D} \right)\left( {\alpha^{2} + \beta^{2} } \right)^{2} - K_{w} - K_{p} \left( {\alpha^{2} + \beta^{2} } \right) \hfill \\ \kappa_{12}& = - \frac{\alpha }{{1 - \nu^{2} }}\left( {\frac{BF}{A} + \frac{{B^{2} \vartheta }}{A} - \left( {D\vartheta + H} \right)} \right)\left( {\alpha^{2} + \beta^{2} } \right) \hfill \\ \kappa_{13}& = - \frac{\beta }{{1 - \nu^{2} }}\left( {\frac{BF}{A} + \frac{{B^{2} \vartheta }}{A} - \left( {D\vartheta + H} \right)} \right)\left( {\alpha^{2} + \beta^{2} } \right) \hfill \\ \kappa_{nl}& = - \frac{A}{16}\left( {\alpha^{4} + \beta^{4} } \right),\,\,\psi_{11} = N_{{x_{0} }} \alpha^{2} + N_{{y_{0} }} \beta^{2} , \hfill \\ \end{aligned}$$
$$\begin{aligned} \kappa_{21}& = - \frac{\alpha }{{1 - \nu^{2} }}\left( {\frac{BF}{A} + \frac{{B^{2} \vartheta }}{A} - \left( {D\vartheta + H} \right)} \right)\left( {\alpha^{2} + \beta^{2} } \right) \hfill \\ \kappa_{22} &= - \left[ \left( {\frac{{\alpha^{2} }}{{1 - \nu^{2} }} + \frac{{\beta^{2} }}{{2\left( {1 + \nu } \right)}}} \right)\left( D\vartheta^{2} + 2H\vartheta \right.\right.\\ &\quad\left.\left. + J - \frac{{B^{2} \vartheta^{2} }}{A} - \frac{{F^{2} }}{A} - 2\frac{B\vartheta F}{A} \right) + \frac{1}{{2\left( {1 + \nu } \right)}}\left( {A\vartheta^{2} + 2\vartheta K + L} \right) \right] \hfill \\ \kappa_{23}& = - \frac{\alpha \beta }{{2\left( {1 - \nu } \right)}}\left( {D\vartheta^{2} + 2H\vartheta + J - \frac{{B^{2} \vartheta^{2} }}{A} - \frac{{F^{2} }}{A} - 2\frac{B\vartheta F}{A}} \right), \hfill \\ \end{aligned}$$
$$\begin{aligned} \kappa_{31} &= - \frac{\beta }{{1 - \nu^{2} }}\left( {\frac{BF}{A} + \frac{{B^{2} \vartheta }}{A} - \left( {D\vartheta + H} \right)} \right)\left( {\alpha^{2} + \beta^{2} } \right) \hfill \\ \kappa_{32}& = - \frac{\alpha \beta }{{2\left( {1 - \nu } \right)}}\left( {D\vartheta^{2} + 2H\vartheta + J - \frac{{B^{2} \vartheta^{2} }}{A} - \frac{{F^{2} }}{A} - 2\frac{B\vartheta F}{A}} \right) \hfill \\ \kappa_{33}& = - \left[ \left( {\frac{{\beta^{2} }}{{1 - \nu^{2} }} + \frac{{\alpha^{2} }}{{2\left( {1 + \nu } \right)}}} \right)\left( D\vartheta^{2} + 2H\vartheta + J - \frac{{B^{2} \vartheta^{2} }}{A}\right.\right.\\ &\quad\left.\left. - \frac{{F^{2} }}{A} - 2\frac{B\vartheta F}{A} \right) + \frac{1}{{2\left( {1 + \nu } \right)}}\left( {A\vartheta^{2} + 2\vartheta K + L} \right) \right], \hfill \\ \end{aligned}$$
$$\begin{aligned} M_{11} &= \left( {\frac{{I_{1}^{2} }}{{I_{0} }} - I_{2} } \right)\left( {\alpha^{2} + \beta^{2} } \right) - I_{0} \quad M_{21} = \alpha \left( {J_{2} - \frac{{I_{1} J_{1} }}{{I_{0} }}} \right) \\ M_{31} &= \beta \left( {J_{2} - \frac{{I_{1} J_{1} }}{{I_{0} }}} \right) \hfill \\ M_{12}& = \alpha \left( {J_{2} - \frac{{I_{1} J_{1} }}{{I_{0} }}} \right)\quad M_{22} = \left( {\frac{{J_{1}^{2} }}{{I_{0} }} - J_{3} } \right) \quad M_{32} = 0 \hfill\\ M_{13} & = \beta \left( {J_{2} - \frac{{I_{1} J_{1} }}{{I_{0} }}} \right) \quad M_{23} = 0 \quad M_{33} = \left( {\frac{{J_{1}^{2} }}{{I_{0} }} - J_{3} } \right), \hfill \\ \end{aligned}$$
$$\begin{aligned} \tilde{\tilde{\kappa }}_{11} &= \frac{{\alpha \left( {\left( { - 1} \right)^{m} - 1} \right)\left( {\left( { - 1} \right)^{n} - 1} \right)}}{{\pi^{2} mn\left( {1 - \nu^{2} } \right)}}\left( {B\vartheta + F} \right)\left( {\alpha^{2} + \nu \beta^{2} } \right),\\ \tilde{\tilde{\kappa }}_{12} &= \frac{{\beta \left( {\left( { - 1} \right)^{m} - 1} \right)\left( {\left( { - 1} \right)^{n} - 1} \right)}}{{\pi^{2} mn\left( {1 - \nu^{2} } \right)}}\left( {B\vartheta + F} \right)\left( {\nu \alpha^{2} + \beta^{2} } \right) \hfill \\ \tilde{\tilde{\kappa }}_{13} &= - \frac{{B\left( {\left( { - 1} \right)^{m} - 1} \right)\left( {\left( { - 1} \right)^{n} - 1} \right)}}{{\pi^{2} mn\left( {1 - \nu^{2} } \right)}}\left( {\alpha^{4} + 2\nu \alpha^{2} \beta^{2} + \beta^{4} } \right),\\ \tilde{\tilde{\tilde{\kappa }}}& = \left( {\kappa_{nl} - \frac{A}{{8\left( {1 - \nu^{2} } \right)}}\left( {\alpha^{4} + 2\nu \alpha^{2} \beta^{2} + \beta^{4} } \right)} \right). \hfill \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.J., Harsha, S.P. Nonlinear Vibration Analysis of Sigmoid Functionally Graded Sandwich Plate with Ceramic-FGM-Metal Layers. J. Vib. Eng. Technol. 8, 67–84 (2020). https://doi.org/10.1007/s42417-018-0058-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-018-0058-8

Keywords

Navigation