Skip to main content
Log in

Orthogonal Array Based Locally D-Optimal Designs for Binary Responses in the Presence of Factorial Effects

  • Original Article
  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

Wang and Stufken (J Stat Theory Practice 14(2):1–15, 2020) identified locally D-optimal designs for generalized linear models with factorial effects and one continuous covariate. Using an approximate design approach, the design problem consists of selecting values for the covariate and design weights for each group formed by the various factors. For the logistic and probit link, the optimal designs in Wang and Stufken (2020) use two covariate values for each of the groups and equal weights. We establish that smaller D-optimal designs can often be obtained by using orthogonal arrays so that an optimal design uses only some of the groups with at most two covariate values in those groups. The general theory is illustrated through an application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen H, Hedayat A (1998) \(2^{n-m}\) designs with resolution iii or iv containing clear two-factor interactions. J Stat Plan Inference 75(1):147–158

    Article  Google Scholar 

  2. He Y, Tang B (2013) Strong orthogonal arrays and associated latin hypercubes for computer experiments. Biometrika 100(1):254–260

    Article  MathSciNet  Google Scholar 

  3. He Y, Cheng C-S, Tang B (2018) Strong orthogonal arrays of strength two plus. Ann Stat 46(2):457–468

    Article  MathSciNet  Google Scholar 

  4. Hedayat A (1989) Orthogonal arrays of strength \(t+\) and their statistical applications. Technical report, University of Illinois, Chicago

  5. Hedayat A (1990) New properties of orthogonal arrays and their statistical applications. In: Ghosh S (ed) Statistical design and analysis of industrial experiments, chapter 13. Dekker, New York, pp 407–422

    Google Scholar 

  6. Hedayat A, Sloane N, Stufken J (1999) Orthogonal arrays: theory and applications. Springer, New York

    Book  Google Scholar 

  7. Lukemire J, Mandal A, Wong WK (2019) d-QPSO: a quantum-behaved particle swarm technique for finding D-optimal designs with discrete and continuous factors and a binary response. Technometrics 61:77–87

    Article  MathSciNet  Google Scholar 

  8. Shi C, Tang B (2019) Design selection for strong orthogonal arrays. Can J Stat 47(2):302–314

    Article  MathSciNet  Google Scholar 

  9. Stufken J, Yang M (2012) On locally optimal designs for generalized linear models with group effects. Stat Sin 22:1765–1786

    MathSciNet  MATH  Google Scholar 

  10. Tan X (2015) Optimal designs for generalized linear models. Unpublished Ph.D. dissertation, University of Georgia

  11. Wang Z, Stufken J (2020) Locally D-optimal designs for binary responses in the presence of factorial effects. J Stat Theory Practice 14(2):1–15

    Article  MathSciNet  Google Scholar 

  12. Whitman C, Gilbert TM, Rahn AM, Antonell JA (2006) Determining factors affecting ESD failure voltage using DOE. Microelectron Reliab 46(8):1228–1237

    Article  Google Scholar 

  13. Wu H, Mee R, Tang B (2012) Fractional factorial designs with admissible sets of clear two-factor interactions. Technometrics 54(2):191–197

    Article  MathSciNet  Google Scholar 

  14. Zhou Y, Tang B (2019) Column-orthogonal strong orthogonal arrays of strength two plus and three minus. Biometrika 106(4):997–1004

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Stufken.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research was partially supported through NSF Grant DMS-1935729.

This article is part of the topical collection “Special Issue: State of the art in research on design and analysis of experiments” guest edited by John Stufken, Abhyuday Mandal, and Rakhi Singh.

Appendix

Appendix

Proof of Theorem 1

From Eq. (8), we have that

$$\begin{aligned} M_{\xi _g}(\varvec{\theta _1^g}) = \frac{1}{2N} \varPsi (c^*) \sum _{(i_1, \ldots , i_L) \in H} \sum _{j=1}^{2} \varvec{D^{i_1 \cdots i_L j}} (\varvec{D^{i_1 \cdots i_L j}})^T, \end{aligned}$$

where for any \((i_1, \ldots , i_L) \in H\), the matrix \(\varvec{D^{i_1 \cdots i_L j}} (\varvec{D^{i_1 \cdots i_L j}})^T\) is

$$\begin{aligned} \begin{pmatrix} 1 &{} (\varvec{Z^{i_1}_{1}})^T &{} \cdots &{} (\varvec{Z^{i_L}_{L}})^T &{} \cdots &{} (\varvec{Z^{i_{l_1}i_{l_2}}_{l_1 l_2}})^T &{} \cdots &{} c_{i_1 \cdots i_L j} \\ &{} \varvec{Z^{i_1}_{1}} (\varvec{Z^{i_1}_{1}})^T &{} \cdots &{} \varvec{Z^{i_1}_{1}} (\varvec{Z^{i_L}_{L}})^T &{} \cdots &{} \varvec{Z^{i_1}_{1}} (\varvec{Z^{i_{l_1} i_{l_2}}_{l_1 l_2}})^T &{} \cdots &{} c_{i_1 \cdots i_L j} \varvec{Z^{i_1}_{1}} \\ &{} &{} \ddots &{} \vdots &{} &{} \vdots &{} &{} \vdots \\ &{} &{} &{} \varvec{Z^{i_L}_{L}} (\varvec{Z^{i_L}_{L}})^T &{} \cdots &{} \varvec{Z^{i_L}_{L}} (\varvec{Z^{i_{l_1} i_{l_2}}_{l_1 l_2}})^T &{} \cdots &{} c_{i_1 \cdots i_L j} \varvec{Z^{i_L}_{L}} \\ &{} &{} &{} &{} \ddots &{} \vdots &{} &{} \vdots \\ &{} &{} &{} &{} &{} \varvec{Z^{i_{l_1} i_{l_2}}_{l_1 l_2}}(\varvec{Z^{i_{l_1} i_{l_2}}_{l_1 l_2}})^T &{} \cdots &{} c_{i_1 \cdots i_L j} \varvec{Z^{i_{l_1} i_{l_2}}_{l_1 l_2}}\\ &{} &{} &{} &{} &{} &{} \ddots &{} \vdots \\ &{} &{} &{} &{} &{} &{} &{} c_{i_1 \cdots i_L j}^2 \end{pmatrix} \end{aligned}$$

Since H has N rows, the top-left element of \(M_{\xi _g}(\varvec{\theta _1^g})\) is

$$\begin{aligned} \frac{1}{2N} \varPsi (c^*) \sum _{(i_1, \ldots , i_L) \in H} \sum _{j=1}^{2} 1 = \varPsi (c^*), \end{aligned}$$

while the bottom-right element is

$$\begin{aligned} \frac{1}{2N} \varPsi (c^*) \sum _{(i_1, \ldots , i_L) \in H} \sum _{j=1}^{2} (c^*)^2 =(c^*)^2 \varPsi (c^*). \end{aligned}$$

All other elements in the last column of \(M_{\xi _g}(\varvec{\theta _1^g})\) are 0 because each cell has c-values \(c^*\) and \(-c^*\) with equal weights.

Other off-diagonal blocks in \(\varvec{D^{i_1 \cdots i_L j}} (\varvec{D^{i_1 \cdots i_L j}})^T\) are of the form \((\varvec{Z^{i_{l}}_{l}})^T\), \((\varvec{Z^{i_{l_1}i_{l_2}}_{l_1l_2}})^T\), \(\varvec{Z^{i_{l_1}}_{l_1}} (\varvec{Z^{i_{l_2}}_{l_2}})^T\) for \(l_1 \not = l_2\), \(\varvec{Z^{i_{l}}_{l}} (\varvec{Z^{i_{l_1}i_{l_2}}_{l_1l_2}})^T\), \(\varvec{(Z^{i_{l_1}i_{l_2}}_{l_1 l_2})}(\varvec{Z^{i_{l_3}i_{l_4}}_{l_3 l_4}})^T\) for \((l_1,l_2) \not = (l_3,l_4) \), or their transposes. Considering what this means for \(M_{\xi _g}(\varvec{\theta _1^g})\), first, from the definition of \(\varvec{Z^{i_{l}}_{l}}\) and since each level of factor l appears equally often, we see that

$$\begin{aligned} \frac{1}{2N} \varPsi (c^*) \sum _{(i_1, \ldots , i_L) \in H} \sum _{j=1}^2 (\varvec{Z^{i_{l}}_{l}})^T = \frac{1}{2N} \varPsi (c^*) \frac{2N}{s_l} \sum _{i_l=1}^{s_l} (\varvec{Z^{i_{l}}_{l}})^T = 0^T. \end{aligned}$$

Now, corresponding to \((\varvec{Z^{i_{l_1}i_{l_2}}_{l_1l_2}})^T\), since all level combinations for any two factors \((l_1,l_2)\) appear equally often, we have

$$\begin{aligned}&\frac{1}{2N} \varPsi (c^*) \sum _{(i_1, \ldots , i_L) \in H} \sum _{j=1}^2 (\varvec{Z^{i_{l_1}i_{l_2}}_{l_1l_2}})^T \\ =&\frac{1}{2N} \varPsi (c^*) \frac{2N}{s_{l_1} s_{l_2}} \sum _{i_{l_1}=1}^{s_{l_1}} \sum _{i_{l_2}=1}^{s_{l_2}} (\varvec{Z^{i_{l_1}}_{l_1}} \otimes \varvec{Z^{i_{l_2}}_{l_2}})^T \\ =&\frac{1}{2N} \varPsi (c^*) \frac{2N}{s_{l_1} s_{l_2}} \sum _{i_{l_1}=1}^{s_{l_1}} (\varvec{Z^{i_{l_1}}_{l_1}}\otimes \sum _{i_{l_2}=1}^{s_{l_2}} \varvec{Z^{i_{l_2}}_{l_2}})^T = 0. \end{aligned}$$

Next, using that the elements of H form an OA of strength 2 and that \(l_1 \not = l_2\),

$$\begin{aligned}&\frac{1}{2N} \varPsi (c^*) \sum _{(i_1, \ldots , i_L) \in H} \sum _{j=1}^2 \varvec{Z^{i_{l_1}}_{l_1}} (\varvec{Z^{i_{l_2}}_{l_2}})^T \\ =&\frac{1}{2N} \varPsi (c^*) \frac{2N}{s_{l_1} s_{l_2}} \left( \sum _{i_{l_1}=1}^{s_{l_1}} \varvec{Z^{i_{l_1}}_{l_1}} \right) \left( \sum _{i_{l_2}=1}^{s_{l_2}} (\varvec{Z^{i_{l_2}}_{l_2}})^T \right) = 0. \end{aligned}$$

Further, if \(l=l_1\), again using that the elements of H form an OA of strength 2,

$$\begin{aligned}&\frac{1}{2N} \varPsi (c^*) \sum _{(i_1, \ldots , i_L) \in H} \sum _{j=1}^2 \varvec{Z^{i_{l}}_{l}} (\varvec{Z^{i_{l_1}i_{l_2}}_{l_1l_2}})^T \\ =&\frac{1}{2N} \varPsi (c^*) \frac{2N}{s_{l_1} s_{l_2}} \sum _{i_{l_1}=1}^{s_{l_1}} \sum _{i_{l_2}=1}^{s_{l_2}} \varvec{Z^{i_{l_1}}_{l_1}} (\varvec{Z^{i_{l_1}}_{l_1}} \otimes \varvec{Z^{i_{l_2}}_{l_2}})^T \\ =&\frac{1}{2N} \varPsi (c^*) \frac{2N}{s_{l_1} s_{l_2}} \sum _{i_{l_1}=1}^{s_{l_1}} \varvec{Z^{i_{l_1}}_{l_1}} (\varvec{Z^{i_{l_1}}_{l_1}} \otimes ( \sum _{i_{l_2}=1}^{s_{l_2}} \varvec{Z^{i_{l_2}}_{l_2}}))^T = 0. \end{aligned}$$

A similar argument applies for \(l=l_2\). If \(l \ne l_1\) and \(l\ne l_2\), then

$$\begin{aligned}&\frac{1}{2N} \varPsi (c^*) \sum _{(i_1, \ldots , i_L) \in H} \sum _{j=1}^2 \varvec{Z^{i_{l}}_{l}} (\varvec{Z^{i_{l_1}i_{l_2}}_{l_1l_2}})^T \\ =&\frac{1}{2N} \varPsi (c^*) \frac{2N}{s_{l_1} s_{l_2} s_l} \sum _{i_{l_1}=1}^{s_{l_1}} \sum _{i_{l_2}=1}^{s_{l_2}} \left( \sum _{i_{l}=1}^{s_{l}} \varvec{Z^{i_{l}}_{l}} \right) (\varvec{Z^{i_{l_1}i_{l_2}}_{l_1l_2}})^T = 0, \end{aligned}$$

where we have used that \((l, l_1, l_2) \in C_3\) and H is an OA of strength 3 for such a set of three columns.

Finally, for the off-diagonal blocks corresponding to \(\varvec{(Z^{i_{l_1}i_{l_2}}_{l_1 l_2})}(\varvec{Z^{i_{l_3}i_{l_4}}_{l_3 l_4}})^T\) for \((l_1,l_2) \not = (l_3,l_4) \), we could have two situations: the two interactions have one factor in common, say \(l_1=l_3\) (and \(l_2 \ne l_4\)), or they represent four different factors. Looking at the first case, we have

$$\begin{aligned}&\frac{1}{2N} \varPsi (c^*) \sum _{(i_1, \ldots , i_L) \in H} \sum _{j=1}^2 \varvec{(Z^{i_{l_1}i_{l_2}}_{l_1 l_2})}(\varvec{Z^{i_{l_3}i_{l_4}}_{l_3 l_4}})^T \\ =&\frac{1}{2N} \varPsi (c^*) \frac{2N}{s_{l_1} s_{l_2} s_{l_4}} \sum _{i_{l_1}=1}^{s_{l_1}} \sum _{i_{l_2}=1}^{s_{l_2}} \sum _{i_{l_4}=1}^{s_{l_4}}\varvec{(Z^{i_{l_1}}_{l_1} \otimes Z^{i_{l_2}}_{l_2})}\varvec{(Z^{i_{l_1}}_{l_1} \otimes Z^{i_{l_4}}_{l_4})}^T\\ =&\frac{1}{2N} \varPsi (c^*) \frac{2N}{s_{l_1} s_{l_2} s_{l_4}} \sum _{i_{l_1}=1}^{s_{l_1}} \sum _{i_{l_2}=1}^{s_{l_2}} \varvec{(Z^{i_{l_1}}_{l_1} \otimes Z^{i_{l_2}}_{l_2})} \varvec{(Z^{i_{l_1}}_{l_1}} \otimes \sum _{i_{l_4}=1}^{s_{l_4}} \varvec{Z^{i_{l_4}}_{l_4})}^T=0, \end{aligned}$$

where we have used that \((l_1, l_2, l_4) \in C_3\) and H is an OA of strength 3 for such a set of three columns.

For the second case, with no common factors, \((l_1,l_2, l_3,l_4) \in C_4\) and H is an OA of strength 4 for such a set of factors. Hence,

$$\begin{aligned}&\frac{1}{2N} \varPsi (c^*) \sum _{(i_1, \ldots , i_L) \in H} \sum _{j=1}^2 \varvec{(Z^{i_{l_1}i_{l_2}}_{l_1 l_2})}(\varvec{Z^{i_{l_3}i_{l_4}}_{l_3 l_4}})^T \\ =&\frac{1}{2N} \varPsi (c^*) \frac{2N}{s_{l_1} s_{l_2} s_{l_3} s_{l_4}} \sum _{i_{l_1}=1}^{s_{l_1}} \sum _{i_{l_2}=1}^{s_{l_2}} \sum _{i_{l_3}=1}^{s_{l_3}} \sum _{i_{l_4}=1}^{s_{l_4}}\varvec{(Z^{i_{l_1}}_{l_1} \otimes Z^{i_{l_2}}_{l_2})}\varvec{(Z^{i_{l_3}}_{l_3} \otimes Z^{i_{l_4}}_{l_4})}^T\\ =&\frac{1}{2N} \varPsi (c^*) \frac{2N}{s_{l_1} s_{l_2} s_{l_3} s_{l_4}} \sum _{i_{l_1}=1}^{s_{l_1}} \sum _{i_{l_2}=1}^{s_{l_2}} \sum _{i_{l_3}=1}^{s_{l_3}} \varvec{(Z^{i_{l_1}}_{l_1} \otimes Z^{i_{l_2}}_{l_2})}\varvec{(Z^{i_{l_3}}_{l_3}} \otimes \sum _{i_{l_4}=1}^{s_{l_4}} \varvec{Z^{i_{l_4}}_{l_4})}^T=0. \end{aligned}$$

For a diagonal block of \(M_{\xi _g}(\varvec{\theta _1^g})\) that corresponds to a main effect, say for factor l, we obtain

$$\begin{aligned} \frac{1}{2N} \varPsi (c^*) \sum _{(i_1, \ldots , i_L) \in H} \sum _{j=1}^{2} \varvec{Z^{i_l}_{l}} (\varvec{Z^{i_l}_{l}})^T = \frac{\varPsi (c^*)}{s_l} \sum _{i_l=1}^{s_l} \varvec{Z^{i_l}_{l}} (\varvec{Z^{i_l}_{l}})^T = {\varPsi (c^*)} B_l, \end{aligned}$$

where \(B_l=\frac{1}{(s_l -1)^2} (s_l I - J)\). The first equality follows since every level of factor l comes \(N/s_l\) times. The second equality follows as in the proof of Lemma 1 in [11].

For a diagonal block of \(M_{\xi _g}(\varvec{\theta _1^g})\) that corresponds to a two-factor interaction, say for factors \((l_1,l_2)\), we get

$$\begin{aligned}&= \frac{1}{2N} \varPsi (c^*) \sum _{(i_1, \ldots , i_L) \in H} \sum _{j=1}^{2} \varvec{Z^{i_{l_1} i_{l_2}}_{l_1 l_2}} (\varvec{Z^{i_{l_1} i_{l_2}}_{l_1 l_2}})^T \\&= \frac{1}{2N} \varPsi (c^*) \frac{2N}{s_{l_1} s_{l_2}} \sum _{i_{l_1}=1}^{s_{l_1}} \sum _{i_{l_2}=1}^{s_{l_2}} \varvec{Z^{i_{l_1} i_{l_2}}_{l_1 l_2}} (\varvec{Z^{i_{l_1}i_{l_2}}_{l_1 l_2}})^T\\&= \frac{1}{2N} \varPsi (c^*) \frac{2N}{s_{l_1} s_{l_2}}(s_{l_1} \cdot B_{l_1}) \otimes (s_{l_2} \cdot B_{l_2}) = \varPsi (c^*) (B_{l_1} \otimes B_{l_2}), \end{aligned}$$

where the penultimate equality follows as in [11].

Combined, the previous steps show that \(M_{\xi _g}(\varvec{\theta _1^g})\) is identical to \(M_{\xi ^*}(\varvec{\theta _1^g})\) in Lemma 2, so that \(\xi _g\) is also D-optimal for \(\varvec{\theta _1^g}\). \(\square \)

Proof of Theorem 2

As in the proof of Theorem 1, we now need to show that \(M_{\xi _{1a}}(\varvec{\theta _1^1})\) is the same as \(M_{\xi ^*}(\varvec{\theta _1^1})\) in Lemma 2. Since H is an OA as in Corollary 1, our work is simplified. Only the entries in \(M_{\xi _{1a}}(\varvec{\theta _1^1})\) that depend on the c-values need verification. In other words, we only need to consider the last column in \(M_{\xi _{1a}}(\varvec{\theta _1^1})\).

First, the bottom-right diagonal element in \(M_{\xi _{1a}}(\varvec{\theta _1^1})\) is

$$\begin{aligned} \frac{1}{N} \varPsi (c^*) \sum _{(i_1, \ldots , i_L) \in H_1 \cup H_2}(c^*)^2 =(c^*)^2 \varPsi (c^*). \end{aligned}$$

Further, for the entry in the final column of \(M_{\xi _{1a}}(\varvec{\theta _1^1})\) that corresponds to the main effect of factor l, using Eq. (8), we get

$$\begin{aligned}&\sum _{(i_1, \ldots , i_L) \in H_1} w_{i_1 \cdots i_L} \varPsi (c_{i_1 \cdots i_L} ) c_{i_1 \cdots i_L} \varvec{Z^{i_l}_{l}} + \sum _{(i_1, \ldots , i_L) \in H_2} w_{i_1 \cdots i_L} \varPsi (c_{i_1 \cdots i_L} ) c_{i_1 \cdots i_L} \varvec{Z^{i_l}_{l}}\\&\quad = \frac{1}{N} \varPsi (c^*) \frac{N}{2s_l}\left( \sum _{i_l=1}^{s_l} c^* \varvec{Z^{i_l}_{l}} - \sum _{i_l=1}^{s_l} c^* \varvec{Z^{i_l}_{l}} \right) = 0. \end{aligned}$$

The first equality follows because every level of factor l appears equally often in both \(H_1\) and \(H_2\).

The only other entry in the final column of \(M_{\xi _{1a}}(\varvec{\theta _1^1})\) corresponds to the interaction of factors 1 and 2. Because H is an orthogonal array of strength 3 for factors 1, 2 and the additional 2-level column (the \((L+1)\)st column), it follows that every level combination \((i_1,i_2)\) for the first two factors appears equally often in \(H_1\) and \(H_2\). Hence,

$$\begin{aligned}&\sum _{(i_1, \ldots , i_L) \in H_1} w_{i_1 \cdots i_L} \varPsi (c_{i_1 \cdots i_L} ) c_{i_1 \cdots i_L} \varvec{Z^{i_1i_2}_{12}} + \sum _{(i_1, \ldots , i_L) \in H_2} w_{i_1 \cdots i_L} \varPsi (c_{i_1 \cdots i_L} ) c_{i_1 \cdots i_L} \varvec{Z^{i_1i_2}_{12}}\\&\quad = \frac{1}{N}\varPsi (c^*)\bigg (\frac{N}{2 s_{1}s_{2}}\bigg ) \sum _{i_{1}=1}^{s_{1}} \sum _{i_{2}=1}^{s_{2}} (c^* \varvec{Z^{i_{1} i_{2}}_{1 2}} - c^* \varvec{Z^{i_{1} i_{2}}_{1 2}})= 0. \end{aligned}$$

Therefore, all entries in the last column of \(M_{\xi _{1a}}(\varvec{\theta _1^1})\) are also equal to those of \(M_{\xi ^*}(\varvec{\theta _1^1})\). This concludes the proof. \(\square \)

Proof of Theorem 3

As in the proof of Theorem 2, it suffices to verify that entries in the final column of \(M_{\xi _{1b}}(\varvec{\theta _1^1})\)) are equal to those in \(M_{\xi ^*}(\varvec{\theta _1^1})\) in Lemma 2. For the bottom-right diagonal element in \(M_{\xi _{1b}}\), using Eq. (8), we get

$$\begin{aligned}&\varPsi (c^*) \bigg ( \frac{1}{N}\sum _{(i_1, \ldots , i_L) \in H_1} (c^*)^2+ \frac{1}{N}\sum _{(i_1, \ldots , i_L) \in H_2}(c^*)^2+ \frac{1}{2N}\sum _{(i_1, \ldots , i_L) \in H_3} \sum _{j=1}^{2}(c^*)^2\bigg )\\&\quad =(c^*)^2 \varPsi (c^*), \end{aligned}$$

by counting the sizes of the \(H_i\)’s.

Further, for the entry in the final column of \(M_{\xi _{1b}}(\varvec{\theta _1^1})\) that corresponds to the main effect of factor l, we get

$$\begin{aligned}&\varPsi (c^*) \frac{1}{N}\bigg (\frac{uN}{(2u+1) s_{l} }\bigg ) \sum _{i_{l}=1}^{s_{l}} (c^* \varvec{Z^{i_{l}}_{l}} - c^* \varvec{Z^{i_{l}}_{l}}) \\&\quad + \varPsi (c^*)\frac{1}{2N}\bigg (\frac{N}{(2u+1) s_{l}}\bigg ) \sum _{i_{l}=1}^{s_{l}} (c^* \varvec{Z^{i_{l}}_{l}} - c^* \varvec{Z^{i_{l}}_{l}})= 0, \end{aligned}$$

where we have used that each level of factor l appears \(\frac{uN}{(2u+1)s_l}\) times in each of \(H_1\) and \(H_2\) and \(\frac{N}{(2u+1)s_l}\) times in \(H_3\).

The only other entry in the final column of \(M_{\xi _{1b}}(\varvec{\theta _1^1})\) corresponds to the interaction of factors 1 and 2. Because H is an orthogonal array of strength 3 for factors 1, 2 and the additional \((2u+1)\)-level column (the \((L+1)\)st column), it follows that every level combination \((i_1,i_2)\) for the first two factors appears \(\frac{Nu}{(2u+1)s_1s_2}\) times in each of \(H_1\) and \(H_2\) and \(\frac{N}{(2u+1)s_1s_2}\) times in \(H_3\). Using Eq. (8), we obtain that the final entry in the final column is equal to

$$\begin{aligned}&\varPsi (c^*) \frac{1}{N}\bigg (\frac{uN}{(2u+1) s_{1} s_{2}}\bigg ) \sum _{i_{1}=1}^{s_{1}} \sum _{i_{2}=1}^{s_{2}}\big (c^* \varvec{Z^{i_{1} i_{2}}_{1 2}} - c^* \varvec{Z^{i_{1} i_{2}}_{1 2}}\big ) \\&\quad + \varPsi (c^*)\frac{1}{2N}\bigg (\frac{N}{(2u+1) s_{1} s_{2}}\bigg ) \sum _{i_{1}=1}^{s_{1}} \sum _{i_{2}=1}^{s_{2}}\big (c^* \varvec{Z^{i_{1} i_{2}}_{1 2}} - c^* \varvec{Z^{i_{1} i_{2}}_{1 2}}\big )= 0. \end{aligned}$$

Therefore, all entries in the last column of \(M_{\xi _{1b}}(\varvec{\theta _1^1})\) are also equal to those of \(M_{\xi ^*}(\varvec{\theta _1^1})\). This concludes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Stufken, J. Orthogonal Array Based Locally D-Optimal Designs for Binary Responses in the Presence of Factorial Effects. J Stat Theory Pract 15, 87 (2021). https://doi.org/10.1007/s42519-021-00224-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42519-021-00224-w

Keywords

Navigation