Skip to main content
Log in

Electrospinning of Neat Graphene Nanofibers

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Macroscopic assembly of graphene sheets has renovated the preparation of neat carbonaceous fibers with integrating high performance and superior functionalities, beyond the pyrolysis of conventional polymeric precursors. To date, graphene microfibers by the liquid crystalline wet-spinning method have been established. However, how to reliably prepare continuous neat graphene nanofibers remains unknown. Here, we present the electrospinning of neat graphene nanofibers enabled by modulating colossally extensional flow state of graphene oxide liquid crystals. We use polymer with mega molecular weight as transient additives to realize the colossal extensional flow and electrospinning. The neat graphene nanofibers feature high electronic quality and crystallinity and exhibit high electrical conductivity of 2.02 × 106 S/m that is to be comparable with single crystal graphite whisker. The electrospinning of graphene nanofibers was extended to prepare large-area fabric with high flexibility and superior specific electrical/thermal conductivities. The electrospinning of graphene nanofibers opens the door to nanofibers of rich two-dimensional sheets and the neat graphene nanofibers may grow to be a new species after conventional carbonaceous nanofibers and whiskers in broad functional applications.

Graphic abstract

Electrospinning of neat graphene nanofibers is realized by achieving the colossal extension flow of GO dispersion with the assistance of mega polymer. Neat graphene nanofibers and fabrics show good continuity, high crystallinity, excellent conductivity and thermal conductivity, having great potentials in extensive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen L-F, Lu Y, Yu L, Lou XW. Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ Sci. 2017;10:1777.

    CAS  Google Scholar 

  2. Malekpour S, Balkus K, Ferraris J. Hybrid supercapacitors using electrodes from fibers comprising polymer blend-metal oxide composites with polymethacrylic acid as chelating agent. Nanotechnology. 2021;32:325401.

    CAS  Google Scholar 

  3. Razavi S, Neisiany R, Razavi M, Das O. Efficient improvement in fracture toughness of laminated composite by interleaving functionalized nanofibers. Polymer . 2021;13:2509.

    CAS  Google Scholar 

  4. Johansen M, Schlueter C, Tam P, Asp L, Liu F. Mapping nitrogen heteroatoms in carbon fibres using atom probe tomography and photoelectron spectroscopy. Carbon. 2021;179:20–7.

    CAS  Google Scholar 

  5. Meek N, Penumadu D. Nonlinear elastic response of pan based carbon fiber to tensile loading and relations to microstructure. Carbon. 2021;178:133–43.

    CAS  Google Scholar 

  6. Al Faruque M, Remadevi R, Guirguis A, Kiziltas A, Mielewski D, Naebe M. Graphene oxide incorporated waste wool/PAN hybrid fibres. Sci Rep. 2021;11:12068.

    CAS  Google Scholar 

  7. Xu Z, Gao C. Graphene in macroscopic order: liquid crystals and wet-spun fibers. Acc Chem Res. 2014;47:1267.

    CAS  Google Scholar 

  8. Liu Y, Liang H, Xu Z, Xi J, Chen G, Gao W, Xue M, Gao C. Superconducting continuous graphene fibers via calcium intercalation. ACS Nano. 2017;11:4301.

    CAS  Google Scholar 

  9. Xu Z, Gao C. Graphene fiber: a new trend in carbon fibers. Mater Today. 2015;18:480.

    CAS  Google Scholar 

  10. Li Z, Liu Z, Sun H, Gao C. Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene. Chem Rev. 2015;115:7046.

    CAS  Google Scholar 

  11. Li P, Liu Y, Shi S, Xu Z, Ma W, Wang Z, Liu S, Gao C. Highly crystalline graphene fibers with superior strength and conductivities by plasticization spinning. Adv Funct Mater. 2020;30:2006584.

    CAS  Google Scholar 

  12. Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun. 2011;2:571.

    Google Scholar 

  13. Xu Z, Liu Y, Zhao X, Peng L, Sun H, Xu Y, Ren X, Jin C, Xu P, Wang M, Gao C. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv Mater. 2016;28:6449.

    CAS  Google Scholar 

  14. Xu Z, Sun H, Zhao X, Gao C. Ultra-strong fibers assembled from giant graphene oxide sheets. Adv Mater. 2013;25:188.

    CAS  Google Scholar 

  15. Zhang L, Zhang G, Liu C, Fan S. High-density carbon nanotube buckypapers with superior transport and mechanical properties. Nano Lett. 2012;12:4848.

    CAS  Google Scholar 

  16. Meng F, Lu W, Li Q, Byun J-H, Oh Y, Chou T-W. Graphene-based fibers: a review. Adv Mater. 2015;27:5113.

    CAS  Google Scholar 

  17. Tian Q, Xu Z, Liu Y, Fang B, Peng L, Xi J, Lia Z, Gao C. Dry spinning approach to continuous graphene fibers with high toughness. Nanoscale. 2017;9:12335.

    CAS  Google Scholar 

  18. Li Z, Xu Z, Liu Y, Wang R, Gao C. Multifunctional non-woven fabrics of interfused graphene fibres. Nat Commun. 2016;7:13684.

    CAS  Google Scholar 

  19. Kim JH, Chang WS, Kim D, Yang JR, Han JT, Lee G-W, Kim JT, Seol SK. 3D Printing of reduced graphene oxide nanowires. Adv Mater. 2015;27:157.

    CAS  Google Scholar 

  20. Singh WI, Sinha S, Devi NA, Nongthombam S, Laha S, Swain BP. Investigation of chemical bonding and electronic network of rGO/PANI/PVA electrospun nanofiber. Polym Bull. 2020. https://doi.org/10.1007/s00289-020-03442-7.

    Article  Google Scholar 

  21. Bao Q, Zhang H, Yang J. Graphene-polymer nanofiber membrane for ultrafast photonics. Adv Funct Mater. 2010;20:782.

    CAS  Google Scholar 

  22. Mustafa MH, Zdunek A. Supercapacitor nanofiber electrodes graphene-based. Int J Electrochem Sci. 2017;12:2917.

    CAS  Google Scholar 

  23. Nobuaki K, Hiroyuki N, Masaru M, Yuki Y, Rintaro O, Ali MD, Daniel PMA, Masaru T, Keiji N, Kazuharu A. Multicomponent nature underlies the extraordinary mechanical properties of spider dragline silk. PANS. 2021;31:118.

    Google Scholar 

  24. Tan Y, Song Y, Zheng Q. Hydrogen bonding-driven rheological modulation of chemically reduced graphene oxide/poly (vinyl alcohol) suspensions and its application in electrospinning. Nanoscale. 2012;4:6997–7005.

    CAS  Google Scholar 

  25. Li H, Zhang Z, Song N, Kwok R, Lam J, Wang L, Wang D, Tang B. Reverse thinking of the aggregation-induced emission principle: amplifying molecular motions to boost photothermal efficiency of nanofibers. Angew Chem. 2020;59:20371–5.

    CAS  Google Scholar 

  26. Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater. 2009;19:2297.

    CAS  Google Scholar 

  27. Reynolds WN, Sharp JV. Crystal shear limit to carbon fibre strength. Carbon. 1974;12:103.

    CAS  Google Scholar 

  28. Zhao X, Zheng B, Huang T, Gao C. Graphene-based single fiber supercapacitor with a coaxial structure. Nanoscale. 2015;7:9399.

    CAS  Google Scholar 

  29. Zheng B, Huang T, Kou L, Zhao X, Gopalsamy K, Gao C. Graphene fiber-based asymmetric micro-supercapacitors. J Mater Chem A. 2014;2:9736.

    CAS  Google Scholar 

  30. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28:325.

    CAS  Google Scholar 

  31. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63:2223.

    CAS  Google Scholar 

  32. Xin G, Yao T, Sun H, Scott SM, Shao D, Wang G, Lian J. Highly thermally conductive and mechanically strong graphene fibers. Science. 2015;349:1083.

    CAS  Google Scholar 

  33. Jayaprakash GK, Flores-Moreno R. Quantum chemical study of Triton X-100 modified graphene surface. Electrochim Acta. 2017;248:225.

    CAS  Google Scholar 

  34. Jang W, Yun J, Park Y, Park IK, Byun H, Lee CH. Polyacrylonitrile nanofiber membrane modified with Ag/GO composite for water purification system. Polymer. 2020;12:2441.

    CAS  Google Scholar 

  35. Li H, Song Z, Zhang X, Huang Y, Li S, Mao Y, Ploehn HJ, Bao Y, Yu M. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science. 2013;342:95.

    CAS  Google Scholar 

  36. Wilke S, Guyon E, Demarsily G. Water penetration through fractured rocks test of a tridimensional percolation description. Math Geol. 1985;17:17.

    Google Scholar 

  37. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev. 2019;119:5298.

    CAS  Google Scholar 

  38. Chang W-M, Wang C-C, Chen C-Y. The combination of electrospinning and forcespinning: effects on a viscoelastic jet and a single nanofiber. Chem Eng J. 2014;244:540.

    CAS  Google Scholar 

  39. Zong XH, Kim K, Fang DF, Ran SF, Hsiao BS, Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer. 2002;43:4403.

    CAS  Google Scholar 

  40. Teo WE, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology. 2006;17:R89.

    CAS  Google Scholar 

  41. Reneker DH, Yarin AL. Electrospinning jets and polymer nanofibers. Polymer. 2008;49:2387.

    CAS  Google Scholar 

  42. Wang C, Lan L, Tan H. The physics of wrinkling in graphene membranes under local tension. Phys Chem Chem Phys. 2013;15:2764.

    CAS  Google Scholar 

  43. Chang IL, Chen J-A. The molecular mechanics study on mechanical properties of graphene and graphite. Appl Phys A Mater. 2015;119:265.

    CAS  Google Scholar 

  44. Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AWK, Bengio EA, ter Waarbeek RF, de Jong JJ, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science. 2013;339:182.

    CAS  Google Scholar 

  45. Cancado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhaes-Paniago R, Pimenta MA. General equation for the determination of the crystallite size L-a of nanographite by Raman spectroscopy. Appl Phys Lett. 2006;88:163106.

    Google Scholar 

  46. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008;8:36.

    CAS  Google Scholar 

  47. Jung DK, Roh J-S, Kim M-S. Effect of carbonization temperature on crystalline structure and properties of isotropic pitch-based carbon fiber .Carbon Lett. 2017;21:51.

    Google Scholar 

  48. Whiteway E, Yang W, Yu V, Hilke M. Time evolution of the growth of single graphene crystals and high resolution isotope labeling. Carbon. 2017;111:173.

    CAS  Google Scholar 

  49. Wang Q, Li Y, Jin S, Sang S. Catalyst-free hybridization of silicon carbide whiskers and expanded graphite by vapor deposition method. Ceram Int. 2015;41:14359.

    CAS  Google Scholar 

  50. Chen J, Kong Q, Liu Z, Bi Z, Jia H, Song G, Xie L, Zhang S, Chen C-M. High yield silicon carbide whiskers from rice husk ash and graphene: growth method and thermodynamics. ACS Sustain Chem Eng.2019;7:19027.

    CAS  Google Scholar 

  51. Li T-T, Wang Y, Peng H-K, Zhang X, Shiu B-C, Lin J-H, Lou C-W. Lightweight, flexible and superhydrophobic composite nanofiber films inspired by nacre for highly electromagnetic interference shielding. Compos Part A Appl Sci Manuf. 2020;128:105685.

    CAS  Google Scholar 

  52. Xin G, Sun H, Hu T, Fard HR, Sun X, Koratkar N, Borca-Tasciuc T, Lian J. Large-area freestanding graphene paper for superior thermal management. Adv Mater. 2014;26:4521.

    CAS  Google Scholar 

  53. Wang D, Song P, Liu C, Wu W, Fan S. Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology. 2008;19:075609.

    Google Scholar 

  54. Zhang M, Wang Y, Huang L, Xu Z, Li C, Shi G. 3D printing of reduced graphene oxide nanowires. Adv Mater. 2015;27:6708.

    CAS  Google Scholar 

  55. Liang Q, Yao X, Wang W, Liu Y, Wong CP. A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials. ACS Nano. 2011;5:2392.

    CAS  Google Scholar 

  56. Kumar S, Anderson DP, Crasto AS. AFM, SEM AND XPS characterization of pan-based carbon-fibers etched in oxygen plasmas. J Mater Sci. 1993;28:423.

    CAS  Google Scholar 

  57. von Sturm F. Graphite fibers and filaments. Adv Mater. 1989;1:130.

    Google Scholar 

  58. Shi W, Hu B, Zhang H, Li J, Yang J, Liu J. Carbon-encapsulated iron oxide nanoparticles in self-supporting carbon nanofiber for high-performance supercapacitor in acid electrolyte with superior stability. ACS Appl Energ Mater. 2020;3:12652–61.

    CAS  Google Scholar 

  59. Xie F, Wang Y, Zhou L, Jia F, Ning D, Lu Z. Electrospun wrinkled porous polyimide nanofiber-based filter via thermally induced phase separation for efficient high-temperature PMs capture. ACS Appl Mater Inter. 2020;12:56499–508.

    CAS  Google Scholar 

  60. Yang Y, Xu Y, Liu Z, Huang H, Fan X, Wang Y, Song Y, Song C. Novel solvent-resistant nanofiltration membranes using MPD co-crosslinked polyimide for efficient desalination. J Membr Sci. 2020;616:118563.

    CAS  Google Scholar 

  61. Amiri A, Conlee B, Tallerine I, Kennedy W, Naraghi M. A novel path towards synthesis of nitrogen-rich porous carbon nanofibers for high performance supercapacitors. Chem Eng J. 2020;399:788.

    Google Scholar 

  62. Xiang S, Zhang N, Fan X. From fiber to fabric: progress towards photovoltaic energy textile. AFMs. 2020;3:76–106.

    Google Scholar 

  63. AlMamun M, Islam M, Islam M, Sowrov K, Hossain M, Ahmed D, Shahariar H. Scalable process to develop durable conductive cotton fabric. AFMs. 2020;2:291–301.

    Google Scholar 

  64. Wang W, Yu A, Zhai J, Wang Z. Recent progress of functional fiber and textile triboelectric nanogenerators: towards electricity power generation and intelligent sensing. AFMs. 2021. https://doi.org/10.1007/s42765-021-00077-9.

    Article  Google Scholar 

Download references

Acknowledgements

Z.P.H, J.Q.W and S.P.L contributed equally to this work. The authors thank the members of staff at SSRF for SAXS characterizations. This work is supported by the National Natural Science Foundation of China (Nos. 52090030, 51973191, 51533008, 51803177 and 51873191), Hundred Talents Program of Zhejiang University (188020*194231701/113), National Key R&D Program of China (No. 2016YFA0200200), Key research and development plan of Zhejiang Province (2018C01049), Fujian Provincial Science and Technology Major Projects (NO. 2018HZ0001-2), the Fundamental Research Funds for the Central Universities (NO. K20200060), Key Laboratory of Novel Adsorption and Separation Materials and Application Technology of Zhejiang Province (512301-I21502), Shandong Provincial Natural Science Foundation (ZR2019YQ19), Project of Shandong Province Higher Educational Science and Technology Program (2019KJA026) and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University(KF2110).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingjun Liu, Yeqiang Tan, Chao Gao or Zhen Xu.

Ethics declarations

Conflict of interest

There is no conflict of interest in the article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3307 KB)

Supplementary file2 (MP4 2548 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Wang, J., Liu, S. et al. Electrospinning of Neat Graphene Nanofibers. Adv. Fiber Mater. 4, 268–279 (2022). https://doi.org/10.1007/s42765-021-00105-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00105-8

Keywords

Navigation