Skip to main content

Advertisement

Log in

Electrospun Metal–Organic Framework Nanofiber Membranes for Energy Storage and Environmental Protection

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) are attractive in many fields due to their unique advantages. However, the practical applications of single MOF materials are limited. In recent years, a large number of MOF-based composites have been investigated to overcome the defects of single MOF materials to broaden the avenues for the practical applications of MOFs. Among them, MOF-based hybrid nanofiber membranes fabricated by electrospinning combine the advantages of polymer nanofibers and inorganic porous materials, receiving extensive attention and development in energy storage and environmental protection. This review systematically summarizes the recent progress of MOF-based hybrid nanofiber membranes prepared by electrospinning from the perspectives of preparation and application. Firstly, two main methods for preparing MOF/polymer nanofibrous membranes are discussed. Next, the applications of MOF/polymer nanofibrous membranes in energy storage and environmental protection are summarized at length. Finally, to fully tap the potential of MOF-based nanofiber membranes in more fields, the current challenges are proposed, and future research directions are discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref [123]. Copyright 2012, the Royal Society of Chemistry. SEM pictures of c PI and d ZIF-8/PI membranes after filtering PM2.5 in the air; exhibition of ZIF-8/PI membrane e stiffness and f flexibility. Reproduced with permission from Ref [126]. Copyright 2019, American Chemical Society. g Schematic diagram of the in situ growth of ZIF-8 on electrospinning nanofibers; h formation mechanism of the in situ ZIF-8/PAN nanofibers; SEM images of i the in situ ZIF-8/PAN nanofibers and j PAN; k, l TEM images of the in situ ZIF-8/PAN nanofibers. Reproduced with permission from Ref [133]. Copyright 2018, American Chemical Society

Fig. 3

Reproduced with permission from Ref [134]. Copyright 2018, the Royal Society of Chemistry. k Schematic diagram of the fabrication procedures of PAN@ZIF-8 electrospinning fibers; SEM pictures of l ZIF-8 on the PAN and m, n the ZIF-8/PAN nanofibers. Reproduced with permission from Ref [105]. Copyright 2016, the Royal Society of Chemistry

Fig. 4

Reproduced with permission from Ref [135]. Copyright 2019, the Royal Society of Chemistry. Schematic diagram of the preparation of UiO-66-NH2/PAN fiber membranes by in situ growth of UiO-66-NH2 on electrospinning fibers: d control PAN sample; e PAN with ATA; f control PAN post-synthesis; g PAN with ATA post-synthesis. Reproduced with permission from Ref [136]. Copyright 2017, American Chemical Society

Fig. 5

Reproduced with permission from Ref [138]. Copyright 2014, the Royal Society of Chemistry. f Schematic sketch of the fabrication of PAN fiber membrane covered with UiO-66-NH2. Reproduced with permission from Ref [140]. Copyright 2019, Elsevier

Fig. 6

Reproduced with permission from Ref [115]. Copyright 2019, Elsevier. f Preparation of the CNT/Co3O4 microtubes; Electrochemical properties of the CNT/Co3O4 microtubes: g Charge–discharge voltage profiles at 0.1 A·g−1; h rate performance at different current densities. Reproduced with permission from Ref [163]. Copyright 2016, Wiley–VCH

Fig. 7

Reproduced with permission from Ref [175]. Copyright 2020, the Royal Society of Chemistry. f Schematic diagram of the fabrication route for C/Co9S8–C@S nanofiber; g cycle properties and coulombic efficiency of the C/Co9S8–C@S nanofibers at 1 C; h cycle properties and coulombic efficiency of C/Co9S8–C@S nanofibers, C/Co9S8@S polyhedron, C@S nanofibers and the sulfur cathode at 0.1 C. Reproduced with permission from Ref [176]. Copyright 2021, Elsevier

Fig. 8

Reproduced with permission from Ref [193]. Copyright 2020, Elsevier. f Schematic diagram of the synthetic process of Fe7S8/N-CNFs; g FESEM picture of Fe7S8/N-CNFs; h HRTEM picture and nanoparticle size distribution (the inset) of Fe7S8/N-CNFs; i charge/discharge curves of the Fe7S8/N-CNFs electrode for the first, second, 30th, 50th and 100th cycles at 0.1 A·g−1; j cycle performance and coulombic efficiency of the Fe7S8/N-CNFs electrode at 0.2 A·g−1. Reproduced with permission from ref [194]. Copyright 2021, Wiley–VCH

Fig. 9

Reproduced with permission from Ref [205]. Copyright 2020, American Chemical Society. d Schematic diagram of the fabrication of pearl-necklace-like composite fiber membranes; e adsorption capacity of all samples for Cr6+ and Cu2+; f effect of contact time on the adsorption of Cr6+ and Cu2+ on the ZIF/CA-24 (experimental condition: at room temperature, pH ≈ 6.5, without stirring). Reproduced with permission from Ref [206]. Copyright 2018, Wiley–VCH. g Preparation of bio-MOF/PAN membrane and its adsorption of cationic dyes; h adsorption capacity of bio-MOF/PAN filter for MB+ with different original concentrations; i adsorption capacity of bio-MOF/PAN filter for MB+ in five cycles. Reproduced with permission from Ref [212]. Copyright 2020, Elsevier. j Fabrication Process of the PLA/ZIF-8@GO composite nanofiber membranes; k mechanisms of photocatalytic degradation of MB on PLA/ZIF-8@GO nanofibers; l removal efficiency of MB on PLA/ZIF-8@GO nanofibers with three cycles. Reproduced with permission from Ref [213]. Copyright 2018, American Chemical Society

Fig. 10

Reproduced with permission from Ref [220]. Copyright 2019, the Royal Society of Chemistry. SEM images of d PI membranes and e ZIF-8/PI membranes; f PM2.5 removal efficiency of different membranes; g the concentration of PM2.5 captured by different membranes in harsh conditions. Reproduced with permission from Ref [126]. Copyright 2019, American Chemical Society

Similar content being viewed by others

References

  1. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature 2012;488:294–303.

    Article  CAS  Google Scholar 

  2. Hung TH, Deng X, Lyu Q, Lin LC, Kang DY. Coulombic effect on permeation of CO2 in metal-organic framework membranes. J Memb Sci 2021;639:119742.

    Article  CAS  Google Scholar 

  3. Heald CL, Spracklen DV. Land use change impacts on air quality and climate. Chem Rev 2015;115:4476–96.

    Article  CAS  Google Scholar 

  4. Zhou L, Tufail MK, Liao Y, Ahmad N, Yu P, Song T, et al. Tailored carrier transport path by interpenetrating networks in cathode composite for high performance all-solid-state Li-SeS2 batteries. Adv Fiber Mater 2022;4:487–502.

    Article  CAS  Google Scholar 

  5. Cheng H, Yan C, Orenstein R, Dirican M, Wei S, Subjalearndee N, et al. Polyacrylonitrile nanofiber-reinforced flexible single-ion conducting polymer electrolyte for high-performance, room-temperature all-solid-state Li-metal batteries. Adv Fiber Mater 2022;4:532–46.

    Article  CAS  Google Scholar 

  6. Wang S, Xu Q, Sun H. Functionalization of fiber devices: materials, preparations and applications. Adv Fiber Mater 2022;4:324–41.

    Article  CAS  Google Scholar 

  7. Shakoor MB, Nawaz R, Hussain F, Raza M, Ali S, Rizwan M, et al. Human health implications, risk assessment and remediation of As-contaminated water: a critical review. Sci Total Environ 2017;601–602:756–69.

    Article  Google Scholar 

  8. Yang Y, Ok YS, Kim KH, Kwon EE, Tsang YF. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review. Sci Total Environ 2017;596–597:303–20.

    Article  Google Scholar 

  9. Sharma VK, Feng M. Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: a review. J Hazard Mater 2019;372:3–16.

    Article  CAS  Google Scholar 

  10. Liu X, Shan Y, Zhang S, Kong Q, Pang H. Application of metal organic framework in wastewater treatment. Green Energy Environ 2022. https://doi.org/10.1016/j.gee.2022.03.005 .

    Article  Google Scholar 

  11. Jun BM, Al-Hamadani YAJ, Son A, Park CM, Jang M, Jang A, et al. Applications of metal-organic framework based membranes in water purification: a review. Sep Purif Technol 2020;247:116947.

    Article  CAS  Google Scholar 

  12. Yu S, Pang H, Huang S, Tang H, Wang S, Qiu M, et al. Recent advances in metal-organic framework membranes for water treatment: a review. Sci Total Environ 2021;800:149662.

    Article  CAS  Google Scholar 

  13. Li W, Liu YY, Bai Y, Wang J, Pang H. Anchoring ZIF-67 particles on amidoximerized polyacrylonitrile fibers for radionuclide sequestration in wastewater and seawater. J Hazard Mater 2020;395:122692.

    Article  CAS  Google Scholar 

  14. Lv K, Fichter S, Gu M, März J, Schmidt M. An updated status and trends in actinide metal-organic frameworks (An-MOFs): from synthesis to application. Coord Chem Rev 2021;446:214011.

    Article  CAS  Google Scholar 

  15. Zhou D, Zhao L, Li B. Recent progress in solution assembly of 2D materials for wearable energy storage applications. J Energy Chem 2021;62:27–42.

    Article  CAS  Google Scholar 

  16. Burdyny T, Smith WA. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ Sci 2019;12:1442–53.

    Article  CAS  Google Scholar 

  17. Wang Z, Roffey A, Losantos R, Lennartson A, Jevric M, Petersen AU, et al. Macroscopic heat release in a molecular solar thermal energy storage system. Energy Environ Sci 2019;12:187–93.

    Article  CAS  Google Scholar 

  18. Chen Y, Wu H, Xiao Q, Lv D, Li F, Li Z, et al. Rapid room temperature conversion of hydroxy double salt to MOF-505 for CO2 capture. CrystEngComm 2019;21:165–71.

    Article  CAS  Google Scholar 

  19. Bennett TD, Cheetham AK. Amorphous metal−organic frameworks. Acc Chem Res 2014;47:1555–62.

    Article  CAS  Google Scholar 

  20. Zhang Y, Su Q, Xu W, Cao G, Wang Y, Pan A, et al. A confined replacement synthesis of bismuth nanodots in MOF derived carbon arrays as binder-free anodes for sodium-ion batteries. Adv Sci 2019;6:1900162.

    Article  Google Scholar 

  21. Morozan A, Jaouen F. Metal organic frameworks for electrochemical applications. Energy Environ Sci 2012;5:9269–90.

    Article  CAS  Google Scholar 

  22. Liu P, Redekop E, Gao X, Liu WC, Olsbye U, Somorjai GA. Oligomerization of light olefins catalyzed by Brønsted-acidic metal-organic framework-808. J Am Chem Soc 2019;141:11557–64.

    Article  CAS  Google Scholar 

  23. Zhu S, Zhao N, Li J, Deng X, Sha J, He C. Hard-template synthesis of three-dimensional interconnected carbon networks: rational design, hybridization and energy-related applications. Nano Today 2019;29:100796.

    Article  CAS  Google Scholar 

  24. Arbulu RC, Jiang YB, Peterson EJ, Qin Y. Metal-organic framework (MOF) nanorods, nanotubes, and nanowires. Angew Chem Int Ed 2018;57:5813–7.

    Article  CAS  Google Scholar 

  25. Liu W, Yin R, Xu X, Zhang L, Shi W, Cao X. Structural engineering of low-dimensional metal-organic frameworks: synthesis, properties, and applications. Adv Sci 2019;6:1802373.

    Article  Google Scholar 

  26. Ren Q, Wang H, Lu XF, Tong YX, Li GR. Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction. Adv Sci 2018;5:1700515.

    Article  Google Scholar 

  27. Rani P, Srivastava R. Exploring the dicationic gemini surfactant for the generation of mesopores: a step towards the construction of a hierarchical metal-organic framework. Inorg Chem Front 2018;5:2856–67.

    Article  CAS  Google Scholar 

  28. Dhakshinamoorthy A, Li Z, Garcia H. Catalysis and photocatalysis by metal organic frameworks. Chem Soc Rev 2018;47:8134–72.

    Article  CAS  Google Scholar 

  29. Zhang C, Shen L, Shen J, Liu F, Chen G, Tao R, et al. Anion-sorbent composite separators for high-rate lithium-ion batteries. Adv Mater 2019;31:1808338.

    Article  Google Scholar 

  30. Wang Y, Feng L, Pang J, Li J, Huang N, Day GS, et al. Photosensitizer-anchored 2D MOF nanosheets as highly stable and accessible catalysts toward artemisinin production. Adv Sci 2019;6:1802059.

    Article  Google Scholar 

  31. Cao S, Chen T, Zheng S, Bai Y, Pang H. High-performance capacitive deionization and killing microorganism in surface-water by ZIF-9 derived carbon composites. Small Methods 2021;5:2101070.

    Article  CAS  Google Scholar 

  32. Ma Z, Zheng R, Liu Y, Ying Y, Shi W. Carbon nanotubes interpenetrating MOFs-derived Co-Ni-S composite spheres with interconnected architecture for high performance hybrid supercapacitor. J Colloid Interface Sci 2021;602:627–35.

    Article  CAS  Google Scholar 

  33. Aslam MK, Ahmad Shah SS, Javed MS, Li S, Hussain S, Hu B, et al. FeCo-Nx encapsulated in 3D interconnected N-doped carbon nanotubes for ultra-high performance lithium-ion batteries and flexible solid-state symmetric supercapacitors. J Electroanal Chem 2019;855:113615.

    Article  CAS  Google Scholar 

  34. Dai S, Han F, Tang J, Tang W. MOF-derived Co3O4 nanosheets rich in oxygen vacancies for efficient all-solid-state symmetric supercapacitors. Electrochim Acta 2019;328:135103.

    Article  CAS  Google Scholar 

  35. Ngyuen DK, Schepisi IM, Amir FZ. Extraordinary cycling stability of Ni3(HITP)2 supercapacitors fabricated by electrophoretic deposition: cycling at 100,000 cycles. Chem Eng J 2019;378:122150.

    Article  CAS  Google Scholar 

  36. Peng Y, Bai Y, Liu C, Cao S, Kong Q, Pang H. Applications of metal–organic framework-derived N, P, S doped materials in electrochemical energy conversion and storage. Coord Chem Rev 2022;466:214602.

    Article  CAS  Google Scholar 

  37. Senthil RA, Osman S, Pan J, Liu X, Wu Y. Recent progress on porous carbon derived from Zn and Al based metal-organic frameworks as advanced materials for supercapacitor applications. J Energy Storage 2021;44:103263.

    Article  Google Scholar 

  38. Hao L, Xia Q, Zhang Q, Masa J, Sun Z. Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: strategies and perspectives. Chinese J Catal 2021;42:1903–20.

    Article  CAS  Google Scholar 

  39. El Hankari S, Bousmina M, El Kadib A. Biopolymer@Metal-Organic framework hybrid materials: a critical survey. Prog Mater Sci 2019;106:100579.

    Article  Google Scholar 

  40. Wu XP, Choudhuri I, Truhlar DG. Computational studies of photocatalysis with metal-organic frameworks. Energy Environ Mater 2019;2:251–63.

    Article  CAS  Google Scholar 

  41. Wei X, Song Y, Song L, Liu XD, Li Y, Yao S, et al. Phosphorization engineering on metal-organic frameworks for quasi-solid-state asymmetry supercapacitors. Small 2021;17:2007062.

    Article  CAS  Google Scholar 

  42. Yang XY, Li WJ, Tan ZL, Sha JQ, Tong ZB, Zhang Y, et al. Polyoxometalate-pillared metal-organic frameworks synthesized by surfactant-assisted strategy and incorporated with carbon nanotubes for energy storage. J Mater Chem A 2020;8:25316–22.

    Article  CAS  Google Scholar 

  43. Li C, Zhao DH, Long HL, Li M. Recent advances in carbonized non-noble metal–organic frameworks for electrochemical catalyst of oxygen reduction reaction. Rare Met 2021;40:2657–89.

    Article  CAS  Google Scholar 

  44. Geng P, Wang L, Du M, Bai Y, Li W, Liu Y, et al. MIL-96-Al for Li–S batteries: shape or size? Adv Mater 2022;34:2107836.

    Article  CAS  Google Scholar 

  45. Li W, Guo X, Geng P, Du M, Jing Q, Chen X, et al. Rational design and general synthesis of multimetallic metal-organic framework nano-octahedra for enhanced Li–S battery. Adv Mater 2021;33:2105163.

    Article  CAS  Google Scholar 

  46. Liu C, Bai Y, Li W, Yang F, Zhang G, Pang H. In Situ growth of three-dimensional MXene/metal–organic framework composites for high-performance supercapacitors. Angew Chem Int Ed 2022;61:e202116282.

    CAS  Google Scholar 

  47. Bai Y, Liu C, Chen T, Li W, Zheng S, Pi Y, et al. MXene-copper/cobalt hybrids via Lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew Chem Int Ed 2021;60:25318–22.

    Article  CAS  Google Scholar 

  48. Li X, Wei J, Li Q, Zheng S, Xu Y, Du P, et al. Nitrogen-doped cobalt oxide nanostructures derived from cobalt-alanine complexes for high-performance oxygen evolution reactions. Adv Funct Mater 2018;28:1800886.

    Article  Google Scholar 

  49. Li B, Gu P, Feng Y, Zhang G, Huang K, Xue H, et al. Ultrathin nickel-cobalt phosphate 2D nanosheets for electrochemical energy storage under aqueous/solid-state electrolyte. Adv Funct Mater 2017;27:1605784.

    Article  Google Scholar 

  50. Zheng S, Li Q, Xue H, Pang H, Xu Q. A highly alkaline-stable metal oxide@metal-organic framework composite for high-performance electrochemical energy storage. Natl Sci Rev 2020;7:305–14.

    Article  CAS  Google Scholar 

  51. Makhanya N, Oboirien B, Ren J, Musyoka N, Sciacovelli A. Recent advances on thermal energy storage using metal-organic frameworks (MOFs). J Energy Storage 2021;34:102179.

    Article  Google Scholar 

  52. Mohamed AM, Ramadan M, Allam NK. Recent advances on zeolitic imidazolate -67 metal-organic framework-derived electrode materials for electrochemical supercapacitors. J Energy Storage 2021;34:102195.

    Article  Google Scholar 

  53. Ubaidullah M, Al-Enizi AM, Ahamad T, Shaikh SF, Al-Abdrabalnabi MA, Samdani MS, et al. Fabrication of highly porous N-doped mesoporous carbon using waste polyethylene terephthalate bottle-based MOF-5 for high performance supercapacitor. J Energy Storage 2021;33:102125.

    Article  Google Scholar 

  54. Chen D, Wei L, Li J, Wu Q. Nanoporous materials derived from metal-organic framework for supercapacitor application. J Energy Storage 2020;30:101525.

    Article  Google Scholar 

  55. Mehtab T, Yasin G, Arif M, Shakeel M, Korai RM, Nadeem M, et al. Metal-organic frameworks for energy storage devices: batteries and supercapacitors. J Energy Storage 2019;21:632–46.

    Article  Google Scholar 

  56. Sankar SS, Karthick K, Sangeetha K, Karmakar A, Madhu R, Kundu S. Current perspectives on 3D ZIFs incorporated with 1D carbon matrices as fibers via electrospinning processes towards electrocatalytic water splitting: a review. J Mater Chem A 2021;9:11961–2002.

    Article  CAS  Google Scholar 

  57. Wang L, Li J, Cheng L, Song Y, Zeng P, Wen X. Application of hard and soft acid base theory to uncover the destructiveness of Lewis bases to UiO-66 type metal organic frameworks in aqueous solutions. J Mater Chem A 2021;9:14868–76.

    Article  CAS  Google Scholar 

  58. Xu LH, Li SH, Mao H, Zhang AS, Cai WW, Wang T, et al. An advanced necklace-like metal organic framework with an ultrahighly continuous structure in the membrane for superior butanol/water separation. J Mater Chem A 2021;9:11853–62.

    Article  CAS  Google Scholar 

  59. Moghadam PZ, Fairen-Jimenez D, Snurr RQ. Efficient identification of hydrophobic MOFs: application in the capture of toxic industrial chemicals. J Mater Chem A 2015;4:529–36.

    Article  Google Scholar 

  60. Tian HR, Zhang Z, Liu SM, Dang TY, Li XH, Lu Y, et al. A novel polyoxovanadate-based Co-MOF: highly efficient and selective oxidation of a mustard gas simulant by two-site synergetic catalysis. J Mater Chem A 2020;8:12398–405.

    Article  CAS  Google Scholar 

  61. Sánchez-González E, Mileo PGM, Sagastuy-Breña M, Álvarez JR, Reynolds JE, Villarreal A, et al. Highly reversible sorption of H2S and CO2 by an environmentally friendly Mg-based MOF. J Mater Chem A 2018;6:16900–9.

    Article  Google Scholar 

  62. Li J, Jiao C, Zhu J, Zhong L, Kang T, Aslam S, et al. Hybrid co-based MOF nanoboxes/CNFs interlayer as microreactors for polysulfides-trapping in lithium-sulfur batteries. J Energy Chem 2021;57:469–76.

    Article  CAS  Google Scholar 

  63. Khodayari P, Jalilian N, Ebrahimzadeh H, Amini S. Trace-level monitoring of anti-cancer drug residues in wastewater and biological samples by thin-film solid-phase micro-extraction using electrospun polyfam/Co-MOF-74 composite nanofibers prior to liquid chromatography analysis. J Chromatogr A 2021;1655:462484.

    Article  CAS  Google Scholar 

  64. Peng J, Tao J, Liu Z, Yang Y, Yu L, Zhang M, et al. Ultra-stable and high capacity flexible lithium-ion batteries based on bimetallic MOFs derivatives aiming for wearable electronic devices. Chem Eng J 2021;417:129200.

    Article  CAS  Google Scholar 

  65. Niu Q, Guo J, Chen B, Nie J, Guo X, Ma G. Bimetal-organic frameworks/polymer core-shell nanofibers derived heteroatom-doped carbon materials as electrocatalysts for oxygen reduction reaction. Carbon 2017;114:250–60.

    Article  CAS  Google Scholar 

  66. Piri-Moghadam H, Alam MN, Pawliszyn J. Review of geometries and coating materials in solid phase microextraction: opportunities, limitations, and future perspectives. Anal Chim Acta 2017;984:42–65.

    Article  CAS  Google Scholar 

  67. Efome JE, Rana D, Matsuura T, Lan CQ. Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous Solution. ACS Appl Mater Interfaces 2018;10:18619–29.

    Article  CAS  Google Scholar 

  68. Topuz F, Abdulhamid MA, Hardian R, Holtzl T, Szekely G. Nanofibrous membranes comprising intrinsically microporous polyimides with embedded metal–organic frameworks for capturing volatile organic compounds. J Hazard Mater 2022;424:127347.

    Article  CAS  Google Scholar 

  69. Li XY, Yan Y, Zhang B, Bai TJ, Wang ZZ, He TS. PAN-derived electrospun nanofibers for supercapacitor applications: ongoing approaches and challenges. J Mater Sci 2021;56:10745–81.

    Article  CAS  Google Scholar 

  70. Acatay K, Simsek E, Ow-Yang C, Menceloglu YZ. Tunable, superhydrophobically stable polymeric surfaces by electrospinning. Angew Chem Int Ed 2004;43:5210–3.

    Article  CAS  Google Scholar 

  71. Giebel E, Mattheis C, Agarwal S, Greiner A. Chameleon nonwovens by green electrospinning. Adv Funct Mater 2013;23:3156–63.

    Article  CAS  Google Scholar 

  72. Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 2007;46:5670–703.

    Article  CAS  Google Scholar 

  73. Li J, Song X, Zhang W, Xu H, Guo T, Zhang X, et al. Microporous carbon nanofibers derived from poly(acrylonitrile-co-acrylic acid) for high-performance supercapacitors. Chem Eur J 2020;26:3326–34.

    Article  CAS  Google Scholar 

  74. Liu Z, Fan X, Cheng L, Zhang J, Tang L, Tang Y, et al. Hybrid polymer membrane functionalized PBO fibers/cyanate esters wave-transparent laminated composites. Adv Fiber Mater 2022;4:520–31.

    Article  CAS  Google Scholar 

  75. Subjalearndee N, He N, Cheng H, Tesatchabut P, Eiamlamai P, Limthongkul P, et al. Gamma(ɣ)-MnO2/rGO fibered cathode fabrication from wet spinning and dip coating techniques for cable-shaped Zn-ion batteries. Adv Fiber Mater 2022;4:457–74.

    Article  CAS  Google Scholar 

  76. Han J, Li L, Fang P, Guo R. Ultrathin MnO2 nanorods on conducting polymer nanofibers as a new class of hierarchical nanostructures for high-performance supercapacitors. J Phys Chem C 2012;116:15900–7.

    Article  CAS  Google Scholar 

  77. Fan L, Yang L, Ni X, Han J, Guo R, Zhang C. Nitrogen-enriched meso-macroporous carbon fiber network as a binder-free flexible electrode for supercapacitors. Carbon 2016;107:629–37.

    Article  CAS  Google Scholar 

  78. Chen M, Wang C, Fang W, Wang J, Zhang W, Jin G, et al. Electrospinning of calixarene-functionalized polyacrylonitrile nanofiber membranes and application as an adsorbent and catalyst support. Langmuir 2013;29:11858–67.

    Article  CAS  Google Scholar 

  79. Lu L, Wu D, Zhang M, Zhou W. Fabrication of polylactide/poly(ε-caprolactone) blend fibers by electrospinning: Morphology and orientation. Ind Eng Chem Res 2012;51:3682–91.

    Article  CAS  Google Scholar 

  80. Zheng N, Huang Y, Sun W, Du X, Liu HY, Moody S, et al. In-situ pull-off of ZnO nanowire from carbon fiber and improvement of interlaminar toughness of hierarchical ZnO nanowire/carbon fiber hybrid composite laminates. Carbon 2016;110:69–78.

    Article  Google Scholar 

  81. González-Vila Á, Debliquy M, Lahem D, Zhang C, Mégret P, Caucheteur C. Molecularly imprinted electropolymerization on a metal-coated optical fiber for gas sensing applications. Sens Actuators B Chem 2017;244:1145–51.

    Article  Google Scholar 

  82. Chen J, Lu L, Wu D, Yuan L, Zhang M, Hua J, et al. Green poly(ε-caprolactone) composites reinforced with electrospun polylactide/poly(ε-caprolactone) blend fiber mats. ACS Sustain Chem Eng 2014;2:2102–10.

    Article  CAS  Google Scholar 

  83. Yu X, Pei C, Chen W, Feng L. 2 dimensional WS2 tailored nitrogen-doped carbon nanofiber as a highly pseudocapacitive anode material for lithium-ion battery. Electrochim Acta 2018;272:119–26.

    Article  CAS  Google Scholar 

  84. Liu W, Wang S, Wu Q, Huan L, Zhang X, Yao C, et al. Fabrication of ternary hierarchical nanofibers MnO2/PANI/CNT and theirs application in electrochemical supercapacitors. Chem Eng Sci 2016;156:178–85.

    Article  CAS  Google Scholar 

  85. Zhang Y, Wen F, Jiang Y, Wang L, Zhou C, Wang H. Layer-by-layer construction of caterpillar-like reduced graphene oxide-poly(aniline-co-o-aminophenol)-Pd nanofiber on glassy carbon electrode and its application as a bromate sensor. Electrochim Acta 2014;115:504–10.

    Article  CAS  Google Scholar 

  86. Ni Y, Liao Y, Zheng M, Shao S. In-situ growth of Co3O4 nanoparticles on mesoporous carbon nanofibers: a new nanocomposite for nonenzymatic amperometric sensing of H2O2. Microchim Acta 2017;184:3689–95.

    Article  CAS  Google Scholar 

  87. Yu L, Zhang Q, Xu Q, Jin D, Jin G, Li K, et al. Electrochemical detection of nitrate in PM2.5 with a copper-modified carbon fiber micro-disk electrode. Talanta 2015;143:245–53.

    Article  CAS  Google Scholar 

  88. Wang Q, Fang Z, Zhang W, Zhang D. High-efficiency g-C3N4 based photocatalysts for CO2 reduction: modification methods. Adv Fiber Mater 2022;4:342–60.

    Article  CAS  Google Scholar 

  89. Song Q, Wu W, Wang Y, Yu J, Hu Z, Wang Y. The structure and properties of polyethylene oxide reinforced poly(Metaphenylene Isophthalamide) fibers. Adv Fiber Mater 2021;4:436–47.

    Article  Google Scholar 

  90. Qiu W, Liu XY. Recent progress of applying mesoscopic functionalization engineering principles to spin advanced regenerated silk fibroin fibers. Adv Fiber Mater 2022;4:390–403.

    Article  CAS  Google Scholar 

  91. Zhang M, Sun Q, Wang Y, Shan W, Lou Z, Xiong Y. Synthesis of porous UiO-66-NH2-based mixed matrix membranes with high stability, flux and separation selectivity for Ga(III). Chem Eng J 2021;421:129748.

    Article  CAS  Google Scholar 

  92. Dai Z, Long Z, Li R, Shi C, Qiao H, Wang K, et al. Metal-organic framework-structured porous ZnCo2O4/C composite nanofibers for high-rate lithium-ion batteries. ACS Appl Energy Mater 2020;3:12378–84.

    Article  CAS  Google Scholar 

  93. Liu W, Zhang H, Zhang W, Wang M, Li J, Zhang Y, et al. Surface modification of a polylactic acid nanofiber membrane by zeolitic imidazolate framework-8 from secondary growth for drug delivery. J Mater Sci 2020;55:15275–87.

    Article  CAS  Google Scholar 

  94. Peng L, Zhang X, Sun Y, Xing Y, Li C. Heavy metal elimination based on metal organic framework highly loaded on flexible nanofibers. Environ Res 2020;188:109742.

    Article  CAS  Google Scholar 

  95. Yang X, Wu X, Chen Z, Li W, Sun QJ, Guo Z, et al. Hierarchically porous N-doped carbon nanofibers derived from ZIF-8/PAN composites for benzene adsorption. J Appl Polym Sci 2021;138:50431.

    Article  CAS  Google Scholar 

  96. Yang S, Cheng Y, Xiao X, Pang H. Development and application of carbon fiber in batteries. Chem Eng J 2020;384:123294.

    Article  CAS  Google Scholar 

  97. Li J, Zhang W, Zhang X, Huo L, Liang J, Wu L, et al. Copolymer derived micro/meso-porous carbon nanofibers with vacancy-type defects for high-performance supercapacitors. J Mater Chem A 2020;8:2463–71.

    Article  CAS  Google Scholar 

  98. Zhao J, He J, Sun M, Qu M, Pang H. Nickel hydroxide-nickel nanohybrids indirectly from coordination microfibers for high performance supercapacitor electrodes. Inorg Chem Front 2015;2:129–35.

    Article  CAS  Google Scholar 

  99. Liu X, Miao J, Fan Q, Zhang W, Zuo X, Tian M, et al. Recent progress on smart fiber and textile based wearable strain sensors: materials, fabrications and applications. Adv Fiber Mater 2022;4:361–89.

    Article  CAS  Google Scholar 

  100. Li L, Liu Y, Song C, Sheng S, Yang L, Yan Z, et al. Wearable alignment-free microfiber-based sensor chip for precise vital signs monitoring and cardiovascular assessment. Adv Fiber Mater 2022;4:475–86.

    Article  Google Scholar 

  101. Kang S, Zhao K, Guang D, Zheng X, Huang C. Advances in biosensing and environmental monitoring based on electrospun nanofibers. Adv Fiber Mater 2022;4:404–35.

    Article  CAS  Google Scholar 

  102. Armstrong MR, Arredondo KYY, Liu CY, Stevens JE, Mayhob A, Shan B, et al. UiO-66 MOF and poly(vinyl cinnamate) nanofiber composite membranes synthesized by a facile three-stage process. Ind Eng Chem Res 2015;54:12386–92.

    Article  CAS  Google Scholar 

  103. Dai X, Cao Y, Shi X, Wang X. The PLA/ZIF-8 nanocomposite membranes: the diameter and surface roughness adjustment by ZIF-8 nanoparticles, high wettability, improved mechanical property, and efficient oil/water separation. Adv Mater Interfaces 2016;3:1600725.

    Article  Google Scholar 

  104. Wu YN, Li F, Liu H, Zhu W, Teng M, Jiang Y, et al. Electrospun fibrous mats as skeletons to produce free-standing MOF membranes. J Mater Chem 2012;22:16971–8.

    Article  CAS  Google Scholar 

  105. Gao M, Zeng L, Nie J, Ma G. Polymer-metal-organic framework core-shell framework nanofibers: Via electrospinning and their gas adsorption activities. RSC Adv 2016;6:7078–85.

    Article  CAS  Google Scholar 

  106. He XX, Zheng J, Yu GF, You MH, Yu M, Ning X, et al. Near-field electrospinning: progress and applications. J Phys Chem C 2017;121:8663–78.

    Article  CAS  Google Scholar 

  107. Ji D, Peng S, Fan L, Li L, Qin X, Ramakrishna S. Thin MoS2 nanosheets grafted MOFs-derived porous Co-N-C flakes grown on electrospun carbon nanofibers as self-supported bifunctional catalysts for overall water splitting. J Mater Chem A 2017;5:23898–908.

    Article  CAS  Google Scholar 

  108. Li T, Zhang Z, Han Z. Research progress in polymer-based metal-organic framework nanofibrous membranes based on electrospinning. J Inorg Mater 2021;36:592–600.

    Article  CAS  Google Scholar 

  109. Liu C, Wang J, Li J, Liu J, Wang C, Sun X, et al. Electrospun ZIF-based hierarchical carbon fiber as an efficient electrocatalyst for the oxygen reduction reaction. J Mater Chem A 2017;5:1211–20.

    Article  CAS  Google Scholar 

  110. Jiang S, Hou H, Agarwal S, Greiner A. Polyimide nanofibers by “green” electrospinning via aqueous solution for filtration applications. ACS Sustain Chem Eng 2016;4:4797–804.

    Article  CAS  Google Scholar 

  111. Jung JW, Lee CL, Yu S, Kim ID. Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review. J Mater Chem A 2016;4:703–50.

    Article  CAS  Google Scholar 

  112. Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M. Electrospinning versus fibre production methods: from specifics to technological convergence. Chem Soc Rev 2012;41:4708–35.

    Article  CAS  Google Scholar 

  113. Deng N, Wang L, Feng Y, Liu M, Li Q, Wang G, et al. Co-based and Cu-based MOFs modified separators to strengthen the kinetics of redox reaction and inhibit lithium-dendrite for long-life lithium-sulfur batteries. Chem Eng J 2020;388:124241.

    Article  CAS  Google Scholar 

  114. Jiang S, Chen Y, Duan G, Mei C, Greiner A, Agarwal S. Electrospun nanofiber reinforced composites: a review. Polym Chem 2018;9:2685–720.

    Article  CAS  Google Scholar 

  115. Zhang CL, Jiang ZH, Lu BR, Liu JT, Cao FH, Li H, et al. MoS2 nanoplates assembled on electrospun polyacrylonitrile-metal organic framework-derived carbon fibers for lithium storage. Nano Energy 2019;61:104–10.

    Article  CAS  Google Scholar 

  116. Song J, Huang M, Lin X, Li SFY, Jiang N, Liu Y, et al. Novel Fe-based metal–organic framework (MOF) modified carbon nanofiber as a highly selective and sensitive electrochemical sensor for tetracycline detection. Chem Eng J 2021;427:130913.

    Article  Google Scholar 

  117. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 2010;28:325–47.

    Article  CAS  Google Scholar 

  118. Liu M, Cai N, Chan V, Yu F. Development and applications of MOFs derivative one-dimensional nanofibers via electrospinning: a mini-review. Nanomaterials 2019;9:1306.

    Article  CAS  Google Scholar 

  119. Dou Y, Zhang W, Kaiser A. Electrospinning of metal-organic frameworks for energy and environmental applications. Adv Sci 2020;7:1902590.

    Article  CAS  Google Scholar 

  120. Wang C, Kaneti YV, Bando Y, Lin J, Liu C, Li J, et al. Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Mater Horizons 2018;5:394–407.

    Article  CAS  Google Scholar 

  121. Lu AX, McEntee M, Browe MA, Hall MG, Decoste JB, Peterson GW. MOFabric: electrospun nanofiber mats from PVDF/UiO-66-NH2 for chemical protection and decontamination. ACS Appl Mater Interfaces 2017;9:13632–6.

    Article  CAS  Google Scholar 

  122. Liang H, Yao A, Jiao X, Li C, Chen D. Fast and sustained degradation of chemical warfare agent simulants using flexible self-supported metal-organic framework filters. ACS Appl Mater Interfaces 2018;10:20396–403.

    Article  CAS  Google Scholar 

  123. Fan L, Xue M, Kang Z, Li H, Qiu S. Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis. J Mater Chem 2012;22:25272–6.

    Article  CAS  Google Scholar 

  124. Guo J, Gao M, Nie J, Yin F, Ma G. ZIF-67/PAN-800 bifunctional electrocatalyst derived from electrospun fibers for efficient oxygen reduction and oxygen evolution reaction. J Colloid Interface Sci 2019;544:112–20.

    Article  CAS  Google Scholar 

  125. Li Z, Chen B, Wang X, Nie J, Ma G. Electrospun bamboo-like Fe3C encapsulated Fe-Si-N co-doped nanofibers for efficient oxygen reduction. J Colloid Interfac Sci 2019;546:231–9.

    Article  CAS  Google Scholar 

  126. Hao Z, Wu J, Wang C, Liu J. Electrospun polyimide/metal-organic framework nanofibrous membrane with superior thermal stability for efficient PM2.5 capture. ACS Appl Mater Interfaces 2019;11:11904–9.

    Article  CAS  Google Scholar 

  127. El-Aswar EI, Ramadan H, Elkik H, Taha AG. A comprehensive review on preparation, functionalization and recent applications of nanofiber membranes in wastewater treatment. J Environ Manage 2022;301:113908.

    Article  CAS  Google Scholar 

  128. Li X, Zhou R, Wang Z, Zhang M, He T. Electrospun metal-organic framework based nanofibers for energy storage and environmental applications: current approaches and challenges. J Mater Chem A 2022;10:1642–81.

    Article  CAS  Google Scholar 

  129. Zhao J, Gong B, Nunn WT, Lemaire PC, Stevens EC, Sidi FI, et al. Conformal and highly adsorptive metal-organic framework thin films via layer-by-layer growth on ALD-coated fiber mats. J Mater Chem A 2015;3:1458–64.

    Article  CAS  Google Scholar 

  130. Di J, Guo J, Wang N, Ma G. Multicomponent doped sugar-coated haws stick-like nanofibers as efficient oxygen reduction reaction catalysts for the Zn-Air battery. ACS Sustain Chem Eng 2019;7:7716–27.

    Article  CAS  Google Scholar 

  131. Mallakpour S, Sirous F, Hussain CM. Metal-organic frameworks/biopolymer nanocomposites: from fundamentals toward recent applications in modern technology. New J Chem 2021;45:8409–26.

    Article  CAS  Google Scholar 

  132. Zhao G, Zhao H, Zhuang X, Shi L, Cheng B, Xu X, et al. Nanofiber hybrid membranes: progress and application in proton exchange membranes. J Mater Chem A 2021;9:3729–66.

    Article  CAS  Google Scholar 

  133. Wang C, Zheng T, Luo R, Liu C, Zhang M, Li J, et al. In situ growth of ZIF-8 on PAN fibrous filters for highly efficient U(VI) removal. ACS Appl Mater Interfaces 2018;10:24164–71.

    Article  CAS  Google Scholar 

  134. Bian Y, Wang R, Wang S, Yao C, Ren W, Chen C, et al. Metal-organic framework-based nanofiber filters for effective indoor air quality control. J Mater Chem A 2018;6:15807–14.

    Article  CAS  Google Scholar 

  135. Zhao R, Tian Y, Li S, Ma T, Lei H, Zhu G. An electrospun fiber based metal-organic framework composite membrane for fast, continuous, and simultaneous removal of insoluble and soluble contaminants from water. J Mater Chem A 2019;7:22559–70.

    Article  CAS  Google Scholar 

  136. Lu AX, Ploskonka AM, Tovar TM, Peterson GW, Decoste JB. Direct surface growth of UIO-66-NH2 on polyacrylonitrile nanofibers for efficient toxic chemical removal. Ind Eng Chem Res 2017;56:14502–6.

    Article  CAS  Google Scholar 

  137. Jin R, Bian Z, Li J, Ding M, Gao L. ZIF-8 crystal coatings on a polyimide substrate and their catalytic behaviours for the Knoevenagel reaction. Dalt Trans 2013;42:3936–40.

    Article  CAS  Google Scholar 

  138. Lian Z, Huimin L, Zhaofei O. In situ crystal growth of zeolitic imidazolate frameworks(ZIF)on electrospun polyurethane nanofibers. Dalt Trans 2014;43:6684–8.

    Article  Google Scholar 

  139. Li Z, Zhou G, Dai H, Yang M, Fu Y, Ying Y, et al. Biomineralization-mimetic preparation of hybrid membranes with ultra-high loading of pristine metal-organic frameworks grown on silk nanofibers for hazard collection in water. J Mater Chem A 2018;6:3402–13.

    Article  CAS  Google Scholar 

  140. Li H, Zhu L, Zhang J, Guo T, Li X, Xing W, et al. High-efficiency separation performance of oil-water emulsions of polyacrylonitrile nanofibrous membrane decorated with metal-organic frameworks. Appl Surf Sci 2019;476:61–9.

    Article  CAS  Google Scholar 

  141. Azadmanjiri J, Srivastava VK, Kumar P, Nikzad M, Wang J, Yu A. Two- and three-dimensional graphene-based hybrid composites for advanced energy storage and conversion devices. J Mater Chem A 2018;6:702–34.

    Article  CAS  Google Scholar 

  142. Fang Y, Ma Y, Zheng M, Yang P, Asiri AM, Wang X. Metal–organic frameworks for solar energy conversion by photoredox catalysis. Coord Chem Rev 2018;373:83–115.

    Article  CAS  Google Scholar 

  143. Gür TM. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy Environ Sci 2018;11:2696–767.

    Article  Google Scholar 

  144. Guo Q, Li Y, Wei XY, Zheng LW, Li ZQ, Zhang KG, et al. Electrospun metal-organic frameworks hybrid nanofiber membrane for efficient removal of As(III) and As(V) from water. Ecotoxicol Environ Saf 2021;228:112990.

    Article  CAS  Google Scholar 

  145. Kang Z, Fan L, Sun D. Recent advances and challenges of metal-organic framework membranes for gas separation. J Mater Chem A 2017;5:10073–91.

    Article  CAS  Google Scholar 

  146. Qian Q, Asinger PA, Lee MJ, Han G, Mizrahi Rodriguez K, Lin S, et al. MOF-based membranes for gas separations. Chem Rev 2020;120:8161–266.

    Article  CAS  Google Scholar 

  147. Tee JK, Yip LX, Tan ES, Santitewagun S, Prasath A, Ke PC, et al. Nanoparticles’ interactions with vasculature in diseases. Chem Soc Rev 2019;48:5381–407.

    Article  CAS  Google Scholar 

  148. Zheng Q, Shen H, Shuai D. Emerging investigators series: advances and challenges of graphitic carbon nitride as a visible-light-responsive photocatalyst for sustainable water purification. Environ Sci Water Res Technol 2017;3:982–1001.

    Article  CAS  Google Scholar 

  149. Huang A, Ma Y, Peng J, Li L, Chou S, Ramakrishna S, et al. Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology. eScience 2021;1:141–62.

    Article  Google Scholar 

  150. Deng L, Hu F, Ma M, Huang SC, Xiong Y, Chen HY, et al. Electronic modulation caused by interfacial Ni-O-M (M=Ru, Ir, Pd) bonding for accelerating hydrogen evolution kinetics. Angew Chem Int Ed 2021;60:22276–82.

    Article  CAS  Google Scholar 

  151. Hao Y, Hu F, Chen Y, Wang Y, Xue J, Yang S, et al. Recent progress of electrospun nanofibers for zinc-air batteries. Adv Fiber Mater 2022;4:185–202.

    Article  CAS  Google Scholar 

  152. Huang H, Yu D, Hu F, Huang SC, Song J, Chen HY, et al. Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries. Angew Chem Int Ed 2022;61:e202116068.

    CAS  Google Scholar 

  153. Li L, Yu D, Li P, Huang H, Xie D, Lin CC, et al. Interfacial electronic coupling of ultrathin transition-metal hydroxide nanosheets with layered MXenes as a new prototype for platinum-like hydrogen evolution. Energy Environ Sci 2021;14:6419–27.

    Article  CAS  Google Scholar 

  154. Song J, Qiu S, Hu F, Ding Y, Han S, Li L, et al. Sub-2 nm thiophosphate nanosheets with heteroatom doping for enhanced oxygen electrocatalysis. Adv Funct Mater 2021;31:2100618.

    Article  CAS  Google Scholar 

  155. Liang C, Chen J, Yu K, Jin W. ZnMn2O4 spheres anchored on jute porous carbon for use as a high-performance anode material in lithium-ion batteries. J Alloys Compd 2021;878:160445.

    Article  CAS  Google Scholar 

  156. Wang X, Fang Y, Yan X, Liu S, Zhao X, Zhang L. Highly conductive polymer electrolytes based on PAN-PEI nanofiber membranes with in situ gelated liquid electrolytes for lithium-ion batteries. Polymer 2021;230:124038.

    Article  CAS  Google Scholar 

  157. Zhu S, Sun J, Wu T, Su X, Su H, Qu S, et al. Graphitized porous carbon nanofibers prepared by electrospinning as anode materials for lithium ion batteries. RSC Adv 2016;6:83185–95.

    Article  CAS  Google Scholar 

  158. Zhu S, Chen M, Sun J, Liu J, Wu T, Su H, et al. Novel highly conductive ferroferric oxide/porous carbon nanofiber composites prepared by electrospinning as anode materials for high performance Li-ion batteries. RSC Adv 2016;6:58529–40.

    Article  CAS  Google Scholar 

  159. Xu Z, Fan L, Ni X, Han J, Guo R. Sn-encapsulated N-doped porous carbon fibers for enhancing lithium-ion battery performance. RSC Adv 2019;9:8753–8.

    Article  CAS  Google Scholar 

  160. Ge P, Zhang L, Yang Y, Sun W, Hu Y, Ji X. Advanced MoSe2/carbon electrodes in Li/Na-ions batteries. Adv Mater Interfaces 2020;7:1901651.

    Article  CAS  Google Scholar 

  161. Huang TT, Wu W. Scalable nanomanufacturing of inkjet-printed wearable energy storage devices. J Mater Chem A 2019;7:23280–300.

    Article  CAS  Google Scholar 

  162. Li Y, Li Q, Tan Z. A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries. J Power Sources 2019;443:227262.

    Article  CAS  Google Scholar 

  163. Chen YM, Yu L, Lou XW. Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew Chem Int Ed 2016;55:5990–3.

    Article  CAS  Google Scholar 

  164. Wu N, Wang J, Liao C, Han L, Song L, Hu Y, et al. A flame retardant separator modified by MOFs-derived hybrid for safe and efficient Li-S batteries. J Energy Chem 2022;64:372–84.

    Article  CAS  Google Scholar 

  165. Choi S, Song J, Wang C, Park S, Wang G. Multifunctional free-standing gel polymer electrolyte with carbon nanofiber interlayers for high-performance lithium-sulfur batteries. Chem-Asian J 2017;12:1470–4.

    Article  CAS  Google Scholar 

  166. Ni L, Zhao G, Wang Y, Wu Z, Wang W, Liao Y, et al. Coaxial carbon/MnO2 hollow nanofibers as sulfur hosts for high-performance lithium-sulfur batteries. Chem-Asian J 2017;12:3128–34.

    Article  CAS  Google Scholar 

  167. Xiao P, Xu Y. Recent progress in two-dimensional polymers for energy storage and conversion: design, synthesis, and applications. J Mater Chem A 2018;6:21676–95.

    Article  CAS  Google Scholar 

  168. An Y, Tan S, Liu Y, Zhu K, Hu L, Rong Y, et al. Designs and applications of multi-functional covalent organic frameworks in rechargeable batteries. Energy Storage Mater 2021;41:354–79.

    Article  Google Scholar 

  169. Zhou Z, Li G, Zhang J, Zhao Y. Wide working temperature range rechargeable lithium-sulfur batteries: a critical review. Adv Funct Mater 2021;31:2107136.

    Article  CAS  Google Scholar 

  170. Lee J, Lee T, Char K, Kim KJ, Choi JW. Issues and advances in scaling up sulfide-based all-solid-state batteries. Acc Chem Res 2021;54:3390–402.

    Article  CAS  Google Scholar 

  171. Ren YX, Zhao TS, Liu M, Tan P, Zeng YK. Modeling of lithium-sulfur batteries incorporating the effect of Li2S precipitation. J Power Sources 2016;336:115–25.

    Article  CAS  Google Scholar 

  172. Kosasang S, Ma N, Duangdangchote S, Chiochan P, Chanlek N, Sawangphruk M. Strong cooperative interaction of lithium and hydrogen bonds between 4-aminobenzoic acid modified interlayer and polysulfides for lithium-sulfur batteries. Carbon 2019;155:553–61.

    Article  CAS  Google Scholar 

  173. Niu H, Wang L, Guan P, Zhang N, Yan C, Ding M, et al. Recent advances in application of ionic liquids in electrolyte of lithium ion batteries. J Energy Storage 2021;40:102659.

    Article  Google Scholar 

  174. Zhao Y, Zhang ZL, Ling XY, Xu XJ, Ma LF, Pang H. Intercalation pseudocapacitance in ZnS@C sheets composites for enhanced electrochemical energy storage. J Energy Storage 2021;39:102611.

    Article  Google Scholar 

  175. Abdul Razzaq A, Yuan X, Chen Y, Hu J, Mu Q, Ma Y, et al. Anchoring MOF-derived CoS2 on sulfurized polyacrylonitrile nanofibers for high areal capacity lithium-sulfur batteries. J Mater Chem A 2020;8:1298–306.

    Article  CAS  Google Scholar 

  176. Wei J, Jiang C, Chen B, Li X, Zhang H. Hollow C/Co9S8 hybrid polyhedra-modified carbon nanofibers as sulfur hosts for promising Li–S batteries. Ceram Int 2021;47:25387–97.

    Article  CAS  Google Scholar 

  177. Liu Y, Zhong W, Yang C, Pan Q, Li Y, Wang G, et al. Direct synthesis of FeS/N-doped carbon composite for high-performance sodium-ion batteries. J Mater Chem A 2018;6:24702–8.

    Article  CAS  Google Scholar 

  178. Wu Y, Fan X, Gaddam RR, Zhao Q, Yang D, Sun X, et al. Mesoporous niobium pentoxide/carbon composite electrodes for sodium-ion capacitors. J Power Sources 2018;408:82–90.

    Article  CAS  Google Scholar 

  179. Zhou G, Miao YE, Wei Z, Mo LL, Lai F, Wu Y, et al. Bioinspired micro/nanofluidic ion transport channels for organic cathodes in high-rate and ultrastable lithium/sodium-ion batteries. Adv Funct Mater 2018;28:1804629.

    Article  Google Scholar 

  180. Hao Z, Dimov N, Chang JK, Okada S. Tin phosphide-carbon composite as a high-performance anode active material for sodium-ion batteries with high energy density. J Energy Chem 2022;64:463–74.

    Article  CAS  Google Scholar 

  181. Senthil C, Park JW, Shaji N, Sim GS, Lee CW. Biomass seaweed-derived nitrogen self-doped porous carbon anodes for sodium-ion batteries: Insights into the structure and electrochemical activity. J Energy Chem 2021;64:286–95.

    Article  Google Scholar 

  182. Sun C, Zhang X, Li C, Wang K, Sun X, Liu F, et al. A safe, low-cost and high-efficiency presodiation strategy for pouch-type sodium-ion capacitors with high energy density. J Energy Chem 2022;64:442–50.

    Article  CAS  Google Scholar 

  183. Wu H, Zhang X, Wu Q, Han Y, Wu X, Ji P, et al. Confined growth of 2D MoS2 nanosheets in N-doped pearl necklace-like structured carbon nanofibers with boosted lithium and sodium storage performance. Chem Commun 2020;56:141–4.

    Article  CAS  Google Scholar 

  184. Aguesse F, Lopez del Amo JM, Otaegui L, Goikolea E, Rojo T, Singh G. Structural and electrochemical analysis of Zn doped Na3Ni2SbO6 cathode for Na-ion battery. J Power Sources 2016;336:186–95.

    Article  CAS  Google Scholar 

  185. Wu X, Li Y, Xiang Y, Liu Z, He Z, Wu X, et al. The electrochemical performance of aqueous rechargeable battery of Zn/Na0.44MnO2 based on hybrid electrolyte. J Power Sources 2016;336:35–9.

    Article  CAS  Google Scholar 

  186. Fu L, Xiong W, Liu Q, Wan S, Kang C, Li G, et al. Metal-organic framework derived FeS/MoS2 composite as a high performance anode for sodium-ion batteries. J Alloys Compd 2021;869:159348.

    Article  CAS  Google Scholar 

  187. Jiang Y, Xie M, Wu F, Ye Z, Zhang Y, Wang Z, et al. Cobalt selenide hollow polyhedron encapsulated in graphene for high-performance lithium/sodium storage. Small 2021;17:2102893.

    Article  CAS  Google Scholar 

  188. Peng J, Ou M, Yi H, Sun X, Zhang Y, Zhang B, et al. Defect-free-induced Na+ disordering in electrode materials. Energy Environ Sci 2021;14:3130–40.

    Article  CAS  Google Scholar 

  189. Guo Y, Zhu Y, Yuan C, Wang C. MgFe2O4 hollow microboxes derived from metal-organic-frameworks as anode material for sodium-ion batteries. Mater Lett 2017;199:101–4.

    Article  CAS  Google Scholar 

  190. Shao M, Cheng Y, Zhang T, Li S, Zhang W, Zheng B, et al. Designing MOFs-derived FeS2@carbon composites for high-rate sodium ion storage with capacitive contributions. ACS Appl Mater Interfaces 2018;10:33097–104.

    Article  CAS  Google Scholar 

  191. Sridhar V, Park H. Microwave induced transformation of metal organic frameworks into defect rich carbon nanofibers. New J Chem 2020;44:5666–72.

    Article  CAS  Google Scholar 

  192. Yang X, Wang S, Yu DYW, Rogach AL. Direct conversion of metal-organic frameworks into selenium/selenide/carbon composites with high sodium storage capacity. Nano Energy 2019;58:392–8.

    Article  CAS  Google Scholar 

  193. Zhang W, Yue Z, Wang Q, Zeng X, Fu C, Li Q, et al. Carbon-encapsulated CoS2 nanoparticles anchored on N-doped carbon nanofibers derived from ZIF-8/ZIF-67 as anode for sodium-ion batteries. Chem Eng J 2020;380:122548.

    Article  CAS  Google Scholar 

  194. Wang Y, Wen Z, Wang CC, Yang CC, Jiang Q. MOF-derived Fe7S8 nanoparticles/N-doped carbon nanofibers as an ultra-stable anode for sodium-ion batteries. Small 2021;17:2102349.

    Article  CAS  Google Scholar 

  195. Das R, Vecitis CD, Schulze A, Cao B, Ismail AF, Lu X, et al. Recent advances in nanomaterials for water protection and monitoring. Chem Soc Rev 2017;46:6946–7020.

    Article  CAS  Google Scholar 

  196. Li X, Gao X, Ai L, Jiang J. Mechanistic insight into the interaction and adsorption of Cr(VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution. Chem Eng J 2015;274:238–46.

    Article  CAS  Google Scholar 

  197. Ding M, Bannuru KKR, Wang Y, Guo L, Baji A, Yang HY. Free-standing electrodes derived from metal-organic frameworks/ nanofibers hybrids for membrane capacitive deionization. Adv Mater Technol 2018;3:1800135.

    Article  Google Scholar 

  198. Xu S, Ren LF, Zhou Q, Bai H, Li J, Shao J. Facile ZIF-8 functionalized hierarchical micronanofiber membrane for high-efficiency separation of water-in-oil emulsions. J Appl Polym Sci 2018;135:46462.

    Article  Google Scholar 

  199. Huang X, Zhang S, Xiao W, Luo J, Li B, Wang L, et al. Flexible PDA@ACNTs decorated polymer nanofiber composite with superhydrophilicity and underwater superoleophobicity for efficient separation of oil-in-water emulsion. J Memb Sci 2020;614:118500.

    Article  CAS  Google Scholar 

  200. Wu W, Shi N, Zhang J, Wu X, Wang T, Yang L, et al. Electrospun fluorescent sensors for the selective detection of nitro explosive vapors and trace water. J Mater Chem A 2018;6:18543–50.

    Article  CAS  Google Scholar 

  201. Gao J, Li B, Wang L, Huang X, Xue H. Flexible membranes with a hierarchical nanofiber/microsphere structure for oil adsorption and oil/water separation. J Ind Eng Chem 2018;68:416–24.

    Article  CAS  Google Scholar 

  202. Gupta RK, Dunderdale GJ, England MW, Hozumi A. Oil/water separation techniques: A review of recent progresses and future directions. J Mater Chem A 2017;5:16025–58.

    Article  CAS  Google Scholar 

  203. Ma Q, Yu Y, Sindoro M, Fane AG, Wang R, Zhang H. Carbon-based functional materials derived from waste for water remediation and energy storage. Adv Mater 2017;29:1605361.

    Article  Google Scholar 

  204. Li K, Ju J, Xue Z, Ma J, Feng L, Gao S, et al. Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water. Nat Commun 2013;4:2276.

    Article  Google Scholar 

  205. Chen X, Chen D, Li N, Xu Q, Li H, He J, et al. Modified-MOF-808-loaded polyacrylonitrile membrane for highly efficient, simultaneous emulsion separation and heavy metal ion removal. ACS Appl Mater Interfaces 2020;12:39227–35.

    Article  CAS  Google Scholar 

  206. Hou X, Zhou H, Zhang J, Cai Y, Huang F, Wei Q. High adsorption pearl-necklace-like composite membrane based on metal-organic framework for heavy metal ion removal. Part Part Syst Charact 2018;35:1700438.

    Article  Google Scholar 

  207. Lin S, Song Z, Che G, Ren A, Li P, Liu C, et al. Adsorption behavior of metal-organic frameworks for methylene blue from aqueous solution. Microporous Mesoporous Mater 2014;193:27–34.

    Article  CAS  Google Scholar 

  208. Zhu Z, Bai YL, Zhang L, Sun D, Fang J, Zhu S. Two nanocage anionic metal–organic frameworks with rht topology and ([M(H2O)6]6)12+ charge aggregation for rapid and selective adsorption of cationic dyes. Chem Commun 2014;50:14674–7.

    Article  CAS  Google Scholar 

  209. Wang XS, Liang J, Li L, Lin ZJ, Bag PP, Gao SY, et al. An anion metal-organic framework with Lewis basic sites-rich toward charge-exclusive cationic dyes separation and size-selective catalytic reaction. Inorg Chem 2016;55:2641–9.

    Article  CAS  Google Scholar 

  210. Hasan Z, Jhung SH. Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions. J Hazard Mater 2015;283:329–39.

    Article  CAS  Google Scholar 

  211. Yao S, Xu T, Zhao N, Zhang L, Huo Q, Liu Y. An anionic metal-organic framework with ternary building units for rapid and selective adsorption of dyes. Dalt Trans 2017;46:3332–7.

    Article  CAS  Google Scholar 

  212. Li T, Liu L, Zhang Z, Han Z. Preparation of nanofibrous metal-organic framework filter for rapid adsorption and selective separation of cationic dye from aqueous solution. Sep Purif Technol 2020;237:116360.

    Article  CAS  Google Scholar 

  213. Dai X, Li X, Zhang M, Xie J, Wang X. Zeolitic imidazole framework/graphene oxide hybrid functionalized poly(lactic acid) electrospun membranes: a promising environmentally friendly water treatment material. ACS Omega 2018;3:6860–6.

    Article  CAS  Google Scholar 

  214. Chen L, Wang X, Rao Z, Tang Z, Wang Y, Shi G, et al. In-situ synthesis of Z-Scheme MIL-100(Fe)/α-Fe2O3 heterojunction for enhanced adsorption and visible-light photocatalytic oxidation of O-xylene. Chem Eng J 2021;416:129112.

    Article  CAS  Google Scholar 

  215. Liu B, Younis SA, Kim KH. The dynamic competition in adsorption between gaseous benzene and moisture on metal-organic frameworks across their varying concentration levels. Chem Eng J 2021;421:127813.

    Article  CAS  Google Scholar 

  216. Ibrahim AO, Adegoke KA, Adegoke RO, AbdulWahab YA, Oyelami VB, Adesina MO. Adsorptive removal of different pollutants using metal-organic framework adsorbents. J Mol Liq 2021;333:115593.

    Article  CAS  Google Scholar 

  217. Wen J, Fang Y, Zeng G. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal–organic frameworks: a review of studies from the last decade. Chemosphere 2018;201:627–43.

    Article  CAS  Google Scholar 

  218. Wang B, Xie LH, Wang X, Liu XM, Li J, Li JR. Applications of metal–organic frameworks for green energy and environment: new advances in adsorptive gas separation, storage and removal. Green Energy Environ 2018;3:191–228.

    Article  Google Scholar 

  219. Lee M, Ojha GP, Oh HJ, Kim T, Kim HY. Copper//terbium dual metal organic frameworks incorporated side-by-side electrospun nanofibrous membrane: a novel tactics for an efficient adsorption of particulate matter and luminescence property. J Colloid Interface Sci 2020;578:155–63.

    Article  CAS  Google Scholar 

  220. Wang X, Xu W, Gu J, Yan X, Chen Y, Guo M, et al. MOF-based fibrous membranes adsorb PM efficiently and capture toxic gases selectively. Nanoscale 2019;11:17782–90.

    Article  CAS  Google Scholar 

  221. Zhang Y, Yuan S, Feng X, Li H, Zhou J, Wang B. Preparation of nanofibrous metal−organic framework filters for. J Am Chem Soc 2016;138:5785–8.

    Article  CAS  Google Scholar 

  222. Liu C, Jiang Y, Zhou C. Photo-switchable smart metal–organic framework membranes with tunable and enhanced molecular sieving performance. J Mater Chem A 2018;6:24949–55.

    Article  CAS  Google Scholar 

  223. Zhang Y, Yang L, Wang L, Cui X, Xing H. Pillar iodination in functional boron cage hybrid supramolecular frameworks for high performance separation of light hydrocarbons. J Mater Chem A 2019;7:27560–6.

    Article  CAS  Google Scholar 

  224. Jiamjirangkul P, Inprasit T, Intasanta V, Pangon A. Metal organic framework-integrated chitosan/poly (vinyl alcohol) (PVA) nanofibrous membrane hybrids from green process for selective CO2 capture and filtration. Chem Eng Sci 2020;221:115650.

    Article  CAS  Google Scholar 

  225. Zhang Y, Zhang Y, Wang X, Yu J, Ding B. Ultrahigh metal−organic framework loading and flexible nanofibrous membranes for efficient CO2 capture with long-term, ultrastable recyclability. ACS Appl Mater Interfaces 2018;10:34802–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC-U1904215), Natural Science Foundation of Jiangsu Province (BK20200044), Changjiang scholars program of the Ministry of Education (Q2018270).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Pang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, Y., Guo, X. et al. Electrospun Metal–Organic Framework Nanofiber Membranes for Energy Storage and Environmental Protection. Adv. Fiber Mater. 4, 1463–1485 (2022). https://doi.org/10.1007/s42765-022-00214-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00214-y

Keywords

Navigation