Skip to main content
Log in

Chitinase production by Trichoderma koningiopsis UFSMQ40 using solid state fermentation

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The chitinases have extensive biotechnological potential but have been little exploited commercially due to the low number of good chitinolytic microorganisms. The purpose of this study was to identify a chitinolytic fungal and optimize its production using solid state fermentation (SSF) and agroindustry substrate, to evaluate different chitin sources for chitinase production, to evaluate different solvents for the extraction of enzymes produced during fermentation process, and to determine the nematicide effect of enzymatic extract and biological control of Meloidogyne javanica and Meloidogyne incognita nematodes. The fungus was previously isolated from bedbugs of Tibraca limbativentris Stal (Hemiptera: Pentatomidae) and selected among 51 isolated fungal as the largest producer of chitinolytic enzymes in SSF. The isolate UFSMQ40 has been identified as Trichoderma koningiopsis by the amplification of tef1 gene fragments. The greatest chitinase production (10.76 U gds−1) occurred with wheat bran substrate at 55% moisture, 15% colloidal chitin, 100% of corn steep liquor, and two discs of inoculum at 30 °C for 72 h. Considering the enzymatic inducers, the best chitinase production by the isolated fungus was achieved using chitin in colloidal, powder, and flakes. The usage of 1:15 g/mL of sodium citrate-phosphate buffer was the best ratio for chitinase extraction of SSF. The Trichoderma koningiopsis UFSMQ40 showed high mortality of M. javanica and M. incognita when applied to treatments with enzymatic filtrated and the suspension of conidia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71:773–782. https://doi.org/10.1007/s00253-005-0183-7

    Article  CAS  PubMed  Google Scholar 

  2. Halder SK, Maity C, Jana A, Das A, Paul T, Das Mohapatra PK, Pati BR, Mondal KC (2013) Proficient biodegradation of shrimp shell waste by Aeromonas hydrophila SBK1 for the concomitant production of antifungal chitinase and antioxidant chitosaccharides. Int Biodeterior Biodegrad 79:88–97. https://doi.org/10.1016/j.ibiod.2013.01.011

    Article  CAS  Google Scholar 

  3. Brzezinska MS, Jankiewicz U, Walczak M (2013) Biodegradation of chitinous substances and chitinase production by the soil actinomycete Streptomyces rimosus. Int Biodeterior Biodegrad 84:104–110. https://doi.org/10.1016/j.ibiod.2012.05.038

    Article  CAS  Google Scholar 

  4. Merzendorfer H (2011) The cellular basis of chitin synthesis in fungi and insects: common principles and differences. Eur J Cell Biol 90:759–769. https://doi.org/10.1016/j.ejcb.2011.04.014

    Article  CAS  PubMed  Google Scholar 

  5. Halder SK, Maity C, Jana A, Pati BR, Mondal KC (2012) Chitinolytic enzymes from the newly isolated Aeromonas hydrophila SBK1: study of the mosquitocidal activity. BioControl. 57:441–449. https://doi.org/10.1007/s10526-011-9405-3

    Article  CAS  Google Scholar 

  6. Schrank A, Vainstein MH (2010) Metarhizium anisopliae enzymes and toxins. Toxicon. 56:1267–1274. https://doi.org/10.1016/j.toxicon.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  7. Halder SK, Jana A, Das A, Paul T, Das Mohapatra PK, Pati BR, Mondal KC (2014) Appraisal of antioxidant, anti-hemolytic and DNA shielding potentialities of chitosaccharides produced innovatively from shrimp shell by sequential treatment with immobilized enzymes. Food Chem 158:325–334. https://doi.org/10.1016/j.foodchem.2014.02.115

    Article  CAS  PubMed  Google Scholar 

  8. Patil NS, Waghmare SR, Jadhav JP (2013) Purification and characterization of an extracellular antifungal chitinase from Penicillium ochrochloron MTCC 517 and its application in protoplast formation. Process Biochem 48:176–183. https://doi.org/10.1016/j.procbio.2012.11.017

    Article  CAS  Google Scholar 

  9. Khan A, Williams KL, Nevalainen HKM (2004) Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biol Control 31:346–352. https://doi.org/10.1016/j.biocontrol.2004.07.011

    Article  CAS  Google Scholar 

  10. Binod P, Sukumaran RK, Shirke SV, Rajput JC, Pandey A (2007) Evaluation of fungal culture filtrate containing chitinase as a biocontrol agent against Helicoverpa armigera. J Appl Microbiol 103:1845–1852. https://doi.org/10.1111/j.1365-2672.2007.03428.x

    Article  CAS  PubMed  Google Scholar 

  11. Patil NS, Jadhav JP (2015) Significance of Penicillium ochrochloron chitinase as a biocontrol agent against pest Helicoverpa armigera. Chemosphere. 128:231–235. https://doi.org/10.1016/j.chemosphere.2015.01.038

    Article  CAS  PubMed  Google Scholar 

  12. Karthik N, Akanksha K, Pandey A (2014) Production, purification and properties of fungal chitinases--a review. Indian J Exp Biol 52:1025–1035 http://www.ncbi.nlm.nih.gov/pubmed/25434097 (accessed Mar 26, 2020)

    PubMed  Google Scholar 

  13. Chavan SB, Deshpande MV (2013) Chitinolytic enzymes: an appraisal as a product of commercial potential. Biotechnol Prog 29:833–846. https://doi.org/10.1002/btpr.1732

    Article  CAS  PubMed  Google Scholar 

  14. Oliveira PC, de Brito AR, Pimentel AB, Soares GA, Pacheco CSV, Santana NB, da Silva EGP, Fernandes AG d A, Ferreira MLO, Oliveira JR, Franco M (2019) Cocoa shell for the production of endoglucanase by Penicillium roqueforti ATCC 10110 in solid state fermentation and biochemical properties. Rev Mex Ing Química 18:777–787. https://doi.org/10.24275/UAM/IZT/DCBI/REVMEXINGQUIM/2019V18N3/OLIVEIRA

    Article  CAS  Google Scholar 

  15. Marques G, Silva TP, Lessa OA, de Brito AR, Reis NS, Fernandes AG d A, Ferreira MLO, Oliveira JR, Franco M (2019) Production of xylanase and endoglucanase by solid-state fermentation of jackfruit residue. Rev Mex Ing Química 18:673–680. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Marques

    Article  CAS  Google Scholar 

  16. Souza LO, de Brito AR, Bonomo RCF, Santana NB, de Almeida Antunes Ferraz JL, Aguiar-Oliveira E, de Araújo Fernandes AG, Ferreira MLO, de Oliveira JR, Franco M (2018) Comparison of the biochemical properties between the xylanases of Thermomyces lanuginosus (Sigma®) and excreted by Penicillium roqueforti ATCC 10110 during the solid state fermentation of sugarcane bagasse. Biocatal Agric Biotechnol 16:277–284. https://doi.org/10.1016/j.bcab.2018.08.016

    Article  Google Scholar 

  17. Ferraz JL d AA, Souza LO, Fernandes AG d A, Oliveira MLF, de Oliveira JR, Franco M (2020) Optimization of the solid-state fermentation conditions and characterization of xylanase produced by Penicillium roqueforti ATCC 10110 using yellow mombin residue ( Spondias mombin L.). Chem Eng Commun 207:31–42. https://doi.org/10.1080/00986445.2019.1572000

    Article  CAS  Google Scholar 

  18. dos Santos TC, Filho GA, Oliveira AC, Rocha TJO, de Paula Pereira Machado F, Bonomo RCF, Mota KIA, Franco M (2013) Application of response surface methodology for producing cellulolytic enzymes by solid-state fermentation from the puple mombin (Spondias purpurea L.) residue. Food Sci Biotechnol 22:1–7. https://doi.org/10.1007/s10068-013-0001-4

    Article  CAS  Google Scholar 

  19. Granato D, Ribeiro JCB, Castro IA, Masson ML (2010) Sensory evaluation and physicochemical optimisation of soy-based desserts using response surface methodology. Food Chem 121:899–906. https://doi.org/10.1016/j.foodchem.2010.01.014

    Article  CAS  Google Scholar 

  20. Marques GL, dos Santos Reis N, Silva TP, Ferreira MLO, Aguiar-Oliveira E, de Oliveira JR, Franco M (2018) Production and characterisation of xylanase and endoglucanases produced by Penicillium roqueforti ATCC 10110 through the solid-state fermentation of rice husk residue. Waste Biomass Valor 9:2061–2069. https://doi.org/10.1007/s12649-017-9994-x

    Article  CAS  Google Scholar 

  21. Stoykov YM, Pavlov AI, Krastanov AI (2015) Chitinase biotechnology: production, purification, and application. Eng Life Sci 15:30–38. https://doi.org/10.1002/elsc.201400173

    Article  CAS  Google Scholar 

  22. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fesh tissue, 1st ed., Focus

  23. O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116. https://doi.org/10.1006/mpev.1996.0376

    Article  PubMed  Google Scholar 

  24. Schmitz A, Riesner D (2006) Purification of nucleic acids by selective precipitation with polyethylene glycol 6000. Anal Biochem 354:311–313. https://doi.org/10.1016/j.ab.2006.03.014

    Article  CAS  PubMed  Google Scholar 

  25. Staden R, Judge DP, Bonfield JK (2003) Analyzing sequences using the Staden Package and EMBOSS, in: Introd. to Bioinforma., Humana Press: pp. 393–410. https://doi.org/10.1007/978-1-59259-335-4_24

  26. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  27. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics. 14:817–818. https://doi.org/10.1093/bioinformatics/14.9.817

    Article  CAS  PubMed  Google Scholar 

  29. Liu CL, Lan CY, Fu CC, Juang RS (2014) Production of hexaoligochitin from colloidal chitin using a chitinase from Aeromonas schubertii. Int J Biol Macromol 69:59–63. https://doi.org/10.1016/j.ijbiomac.2014.05.028

    Article  CAS  PubMed  Google Scholar 

  30. R Core Team (2018) R: a language and environment for statistical Computing

  31. Kovacs K, Szakacs G, Pusztahelyi T, Pandey A (2004) Production of chitinolytic enzymes with Trichoderma longibrachiatum IMI 92027 in solid substrate fermentation. Appl Biochem Biotechnol - Part A Enzym Eng Biotechnol, Springer:189–204. https://doi.org/10.1385/ABAB:118:1-3:189

  32. Miller GL (1959) Use of Dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  33. Hussey R, Baker K (1973) Comparison of methods of collecting inocula for Meloidogyne spp., including a new technique

  34. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267. https://doi.org/10.1093/jee/18.2.265a

    Article  CAS  Google Scholar 

  35. Anees M, Tronsmo A, Edel-Hermann V, Hjeljord LG, Héraud C, Steinberg C (2010) Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani. Fungal Biol 114:691–701. https://doi.org/10.1016/j.funbio.2010.05.007

    Article  PubMed  Google Scholar 

  36. Kullnig-Gradinger CM, Szakacs G, Kubicek CP (2002) Phylogeny and evolution of the genus Trichoderma: a multigene approach. Mycol Res 106:757–767. https://doi.org/10.1017/S0953756202006172

    Article  CAS  Google Scholar 

  37. Samuels GJ (2006) Trichoderma: Systematics, the sexual state, and ecology, in: Phytopathology: pp. 195–206. https://doi.org/10.1094/PHYTO-96-0195

  38. Dhillon GS, Brar SK, Kaur S, Valero JR, Verma M (2011) Chitinolytic and chitosanolytic activities from crude cellulase extract produced by A. niger grown on apple pomace through Koji fermentation. J Microbiol Biotechnol 21:1312–1321. https://doi.org/10.4014/jmb.1106.06036

    Article  CAS  PubMed  Google Scholar 

  39. Thadathil N, Kuttappan AKP, Vallabaipatel E, Kandasamy M, Velappan SP (2013) Statistical optimization of solid state fermentation conditions for the enhanced production of thermoactive chitinases by mesophilic soil fungi using response surface methodology and their application in the reclamation of shrimp processing by-products. Ann Microbiol 64:671–681. https://doi.org/10.1007/s13213-013-0702-1

    Article  CAS  Google Scholar 

  40. Nampoothiri KM, Baiju TV, Sandhya C, Sabu A, Szakacs G, Pandey A (2004) Process optimization for antifungal chitinase production by Trichoderma harzianum. Process Biochem 39:1583–1590. https://doi.org/10.1016/S0032-9592(03)00282-6

    Article  CAS  Google Scholar 

  41. Patil NS, Jadhav JP (2014) Enzymatic production of N-acetyl-D-glucosamine by solid state fermentation of chitinase by Penicillium ochrochloron MTCC 517 using agricultural residues. Int Biodeterior Biodegrad 91:9–17. https://doi.org/10.1016/j.ibiod.2014.03.003

    Article  CAS  Google Scholar 

  42. Berger LRR, Stamford TCM, Stamford-Arnaud TM, De Oliveira Franco L, Do Nascimento AE, Horacinna HM, Macedo RO, De Campos-Takaki GM (2014) Effect of corn steep liquor (CSL) and cassava wastewater (CW) on chitin and chitosan production by cunninghamella elegans and their physicochemical characteristics and cytotoxicity. Molecules. 19:2771–2792. https://doi.org/10.3390/molecules19032771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hamano PS, Kilikian BV (2006) Production of red pigments by Monascus ruber in culture media containing corn steep liquor. Braz J Chem Eng 23:443–449. https://doi.org/10.1590/S0104-66322006000400002

    Article  CAS  Google Scholar 

  44. Nascimento R d AL, Alves MHM, Freitas JHE, Manhke LC, Luna MAC, de Santana KV, do Nascimento AE, da Silva CAA (2015) Aproveitamento da água de maceração de milho para produção de compostos bioativos por Aspergillus niger (UCP/WFCC 1261). E-Xacta 8:15–29. https://doi.org/10.18674/exacta.v8i1.1421

    Article  Google Scholar 

  45. Fenice M, Leuba JL, Federici F (1998) Chitinolytic enzyme activity of Penicillium janthinellum P9 in bench-top bioreactor. J Ferment Bioeng 86:620–623. https://doi.org/10.1016/S0922-338X(99)80020-8

    Article  CAS  Google Scholar 

  46. Rattanakit N, Yang S, Wakayama M, Plikomol A, Tachiki T (2003) Saccharification of chitin using solid-state culture of Aspergillus sp. S1-13 with shellfish waste as a substrate. J Biosci Bioeng 95:391–396. https://doi.org/10.1016/s1389-1723(03)80073-7

    Article  CAS  PubMed  Google Scholar 

  47. Binod P, Sandhya C, Suma P, Szakacs G, Pandey A (2007) Fungal biosynthesis of endochitinase and chitobiase in solid state fermentation and their application for the production of N-acetyl-d-glucosamine from colloidal chitin. Bioresour Technol 98:2742–2748. https://doi.org/10.1016/j.biortech.2006.09.030

    Article  CAS  PubMed  Google Scholar 

  48. Nawani NN, Kapadnis BP (2005) Optimization of chitinase production using statistics based experimental designs, process Biochem

  49. Leger RJS, Cooper RM, Charnley AK (1986) Cuticle degrading enzymes of entomopathogenic fungi: regulation of production of chitinolytic enzymes. J Gen Microbiol 132:1509–1517. https://doi.org/10.1099/00221287-132-6-1509

    Article  Google Scholar 

  50. Florido EB, Camilo PB, Mayorga-Reyes L, Cervantes RG, Cruz PM, Azaola A (2009) β-N-Acetylglucosaminidase production by Lecanicillium (Verticillium) lecanii ATCC 26854 by solid-state fermentation utilizing shrimp shell. Interciencia 34:356–360

    Google Scholar 

  51. Barranco-Florido JE, Alatorre-Rosas R, Gutiérrez-Rojas M, Viniegra-González G, Saucedo-Castañeda G (2002) Criteria for the selection of strains of entomopathogenic fungi Verticillium lecanii for solid state cultivation. Enzym Microb Technol 30:910–915. https://doi.org/10.1016/S0141-0229(02)00032-7

    Article  CAS  Google Scholar 

  52. Gkargkas K, Mamma D, Nedev G, Topakas E, Christakopoulos P, Kekos D, Macris BJ (2004) Studies on a N-acetyl-β-D-glucosaminidase produced by Fusarium oxysporum F3 grown in solid-state fermentation. Process Biochem 39:1599–1605. https://doi.org/10.1016/S0032-9592(03)00287-5

    Article  CAS  Google Scholar 

  53. Rattanakit N, Plikomol A, Yano S, Wakayama M, Tachiki T (2002) Utilization of shrimp shellfish waste as a substrate for solid-state cultivation of Aspergillus sp. S1–13: evaluation of a culture based on chitinase formation which is necessary for chitin-assimilation. J Biosci Bioeng 93:550–556. https://doi.org/10.1016/s1389-1723(02)80236-5

    Article  CAS  PubMed  Google Scholar 

  54. Rattanakit N, Yano S, Plikomol A, Wakayama M, Tachiki T (2007) Purification of Aspergillus sp. S1-13 chitinases and their role in saccharification of chitin in mash of solid-state culture with shellfish waste. J Biosci Bioeng 103:535–541. https://doi.org/10.1263/jbb.103.535

    Article  CAS  PubMed  Google Scholar 

  55. Rustiguel CB, Jorge JA, Guimarães LHS (2012) Optimization of the Chitinase production by different Metarhizium anisopliae strains under solid-state fermentation with silkworm Chrysalis as substrate using CCRD. Adv Microbiol 02:268–276. https://doi.org/10.4236/aim.2012.23032

    Article  CAS  Google Scholar 

  56. Patidar P, Agrawal D, Banerjee T, Patil S (2005) Chitinase production by Beauveria felina RD 101: optimization of parameters under solid substrate fermentation conditions. World J Microbiol Biotechnol 21:93–95. https://doi.org/10.1007/s11274-004-1553-5

    Article  CAS  Google Scholar 

  57. Patidar P, Agrawal D, Banerjee T, Patil S (2005) Optimisation of process parameters for chitinase production by soil isolates of Penicillium chrysogenum under solid substrate fermentation. Process Biochem 40:2962–2967. https://doi.org/10.1016/j.procbio.2005.01.013

    Article  CAS  Google Scholar 

  58. Fernández-Lahore HM, Fraile ER, Cascone O (1998) Acid protease recovery from a solid-state fermentation system. J Biotechnol 62:83–93. https://doi.org/10.1016/S0168-1656(98)00048-0

    Article  Google Scholar 

  59. Freitas MA, Pedrosa EMR, Mariano RLR, Maranhão SRVL (2012) Screening Trichoderma spp. as potential agents for biocontrol of Meloidogyne incognita in sugarcane. Neotropica 42:115–122

    Google Scholar 

  60. Zhang S, Gan Y, Xu B (2015) Biocontrol potential of a native species of Trichoderma longibrachiatum against Meloidogyne incognita. Appl Soil Ecol 94:21–29. https://doi.org/10.1016/j.apsoil.2015.04.010

    Article  Google Scholar 

  61. Moura Mascarin G, Ferreira M, Junior B, Vieira J, Filho A (2012) Trichoderma harzianum reduces population of Meloidogyne incognita in cucumber plants under greenhouse conditions. J Entomol Nematol 4:54–57. https://doi.org/10.5897/JEN12.007

    Article  Google Scholar 

  62. Pan M, Li J, Lv X, Du G, Liu L (2019) Molecular engineering of chitinase from Bacillus sp. DAU101 for enzymatic production of chitooligosaccharides. Enzym Microb Technol 124:54–62. https://doi.org/10.1016/j.enzmictec.2019.01.012

    Article  CAS  Google Scholar 

  63. Khan FI, Bisetty K, Singh S, Permaul K, Hassan MI (2015) Chitinase from Thermomyces lanuginosus SSBP and its biotechnological applications. Extremophiles. 19:1055–1066. https://doi.org/10.1007/s00792-015-0792-8

    Article  CAS  PubMed  Google Scholar 

  64. Patil RS, Ghormade V, Deshpande MV (2000) Chitinolytic enzymes: an exploration. Enzym Microb Technol 26:473–483. https://doi.org/10.1016/S0141-0229(00)00134-4

    Article  CAS  Google Scholar 

  65. Inokuma K, Takano M, Hoshino K (2013) Direct ethanol production from N-acetylglucosamine and chitin substrates by Mucor species. Biochem Eng J 72:24–32. https://doi.org/10.1016/j.bej.2012.12.009

    Article  CAS  Google Scholar 

  66. Chen L, Jiang H, Cheng Q, Chen J, Wu G, Kumar A, Sun M, Liu Z (2015) Enhanced nematicidal potential of the chitinase pachi from Pseudomonas aeruginosa in association with Cry21Aa. Sci Rep 5:1–11. https://doi.org/10.1038/srep14395

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Coordination for the Improvement of Higher Education Personnel (CAPES) and the National Council for Scientific and Technological Development (CNPq) for providing scholarship and funding to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiana Bortoluzzi Baldoni.

Additional information

Responsible Editor: Inês Conceição Roberto.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Trichoderma koningiopsis UFSMQ40 presents highest production of chitinase.

The best chitinase production was found using wheat bran substrate in 55% of moisture.

Chitin in flakes was used as enzymatic inducers without altering chitinase production.

• Trichoderma koningiopsis UFSMQ40 offer potential for industrial chitinase production.

The isolated fungi present high mortality effectiveness of phytopathogenic nematodes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldoni, D.B., Antoniolli, Z.I., Mazutti, M.A. et al. Chitinase production by Trichoderma koningiopsis UFSMQ40 using solid state fermentation. Braz J Microbiol 51, 1897–1908 (2020). https://doi.org/10.1007/s42770-020-00334-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00334-w

Keywords

Navigation