Skip to main content
Log in

A Review of State-of-the-art Techniques for PMSM Parameter Identification

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

In this paper, a review of previous research in d- and q-axis inductance identification techniques for permanent magnet synchronous motor (PMSM) is presented. The d- and q-axis inductances have an important influence on both the transient and steady-state responses of PMSM. Therefore, their accurate information is essential not only for predicting the responses but also for designing system controllers. However, standardized procedures for the PMSM inductance identification have not yet been established. The main purpose of this paper is to provide an understanding of the various parameter identification methods. Conventional techniques are reviewed and introduced with their inherent advantages and drawbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Han YS, Choi JS, Kim YS (2000) Sensorless PMSM drive with a sliding mode control based adaptive speed and stator resistance estimator. IEEE Trans Magn 36(5):3588–3591

    Google Scholar 

  2. Nahid-Mobarakeh B, Meibody-Tabar F, Sargos FM (2004) Mechanical sensorless control of PMSM with online estimation of stator resistance. IEEE Trans Ind Appl 40(2):457–471

    Google Scholar 

  3. Lee K-W, Jung D-H, Ha I-J (2004) An online identification method for both stator resistance and back-EMF coefficient of PMSMs without rotational transducers. IEEE Trans Ind Electron 51(2):507–510

    Google Scholar 

  4. Rashed M, MacConnell PFA, Stronach AF, Acarnley P (2007) Sensorless indirect-rotor-field-orientation speed control of a permanent-magnet synchronous motor with stator-resistance estimation. IEEE Trans Ind Electron 54(3):1664–1675

    Google Scholar 

  5. Wilson SD, Stewart P, Stewart J (2012) Real-time thermal management of permanent magnet synchronous motors by resistance estimation. IET Electr Power Appl 6(9):716–726

    Google Scholar 

  6. Hinkkanen M, Tuovinen T, Harnefors L, Luomi J (2012) A combined position and stator-resistance observer for salient PMSM drives: design and stability analysis. IEEE Trans Power Electron 27(2):601–609

    Google Scholar 

  7. Štumberger B, Štumberger G, Dolinar D, Hamler A, Trlep M (2003) Evaluation of saturation and cross-magnetization effects in interior permanent-magnet synchronous motor. IEEE Trans Ind Appl 39(5):1264–1271

    Google Scholar 

  8. Rabiei A, Thiringer T, Alatalo M, Grunditz E (2016) Improved maximumtorque-per-ampere algorithm accounting for core saturation, cross-coupling effect and temperature for a PMSM intended for vehicular applications. IEEE Trans Transp Electrif 2(2):150–159

    Google Scholar 

  9. Liang W, Fei W, Luk PCK (2016) An improved sideband current harmonic model of interior PMSM drive by considering magnetic saturation and cross-coupling effects. IEEE Trans Ind Electron 63(7):4097–4104

    Google Scholar 

  10. Sellschopp FS, Arjona MA (2006) DC decay test for estimating d-axis synchronous machine parameters: a two-transfer-function approach. IEE Proc Electr Power Appl 153(1):123–128

    Google Scholar 

  11. Pérez JNH, Hernandez OS, Caporal RM, Magdaleno JDJR, Barreto HP (2013) Parameter identification of a permanent magnet synchronous machine based on current decay test and particle swarm optimization. IEEE Lat Am Trans 11(5):1176–1181

    Google Scholar 

  12. Horning S, Keyhani A, Kamwa I (1997) On-line evaluation of a round rotor synchronous machine parameter set estimated from standstill time-domain data. IEEE Trans Energy Convers 12(4):289–296

    Google Scholar 

  13. Zhang J, Radun AV (2006) A new method to measure the switched reluctance motor’s flux. IEEE Trans Ind Appl 42(5):1171–1176

    Google Scholar 

  14. Kilthau A and Pacas JM (2001) Parameter-measurement and control of the synchronous reluctance machine including cross saturation. In proceedings of Conf. Rec. IEEE IAS Annu. Meeting, Chicago, USA, Sep./Oct. 2001.

  15. Sellschopp FS, Arjona MA (2005) A tool for extracting synchronous machines parameters from the dc flux decay test. Comput Electr Eng 31(1):56–68

    Google Scholar 

  16. Hasni M, Touhami O, Ibtiouen R, Fadel M, Caux S (2008) Synchronous machine parameter identification by various excitation signals. Electr Eng 90(3):219–228

    MATH  Google Scholar 

  17. Turner PJ, Reece ABJ, Macdonald DC (1989) The D.C. decay test for determining synchronous machine parameters: measurement and simulation. IEEE Trans Energy Convers 4(4):616–623

    Google Scholar 

  18. Tumageanian A, Keyhani A (1995) Identification of synchronous machine linear parameters from standstill step voltage input data. IEEE Trans Energy Convers 10(2):232–240

    Google Scholar 

  19. Sharma VK, Murthy SS, Singh B (1999) An improved method for the determination of saturation characteristics of switched reluctance motors. IEEE Trans Instrum Meas 48(5):995–1000

    Google Scholar 

  20. Kamwa I, Viarouge P, Dickinson EJ (1991) Identification of generalized models of synchronous machine from time-domain tests. IEE Proc C 138(6):485–498

    Google Scholar 

  21. Hasni M, Touhami O, Ibtiouen R, Fadel M, Caux S (2010) Estimation of synchronous machine parameters by standstill tests. Math Comput Simul 81(2):277–289

    MathSciNet  MATH  Google Scholar 

  22. Boje ES, Balda JC, Harley RG, Beck RC (1990) Time-domain identification of synchronous machine parameters from simple standstill tests. IEEE Trans Energy Convers 5(1):164–175

    Google Scholar 

  23. Groza VZ (2003) Experimental determination of synchronous machine reactances from DC decay at standstill. IEEE Trans Instrum Meas 52(1):158–164

    Google Scholar 

  24. Vicol L, Xuan MT, Wetter R, Simond J-J, Viorel IA (2006) On the identification of the synchronous machine parameters using standstill DC decay test. In Proceedings of ICEM 2006 Conference, Chania, Greece.

  25. Sandre-hernandez O, Morales-caporal R, Rangel-magdaleno J, Peregrina-barreto H, Hernandez-perez JN (2015) Parameter identification of PMSMs using experimental measurements and a PSO algorithm. IEEE Trans Instrum Meas 64(8):2146–2154

    Google Scholar 

  26. Boldea I (1996) Reluctance synchronous machines and drives. Oxford University Press, Oxford

    Google Scholar 

  27. Y. Gao, R. Qu, and Y. Liu (2013) An improved AC standstill method for inductance measurement of interior permanent magnet synchronous motors. In Proceedings of 2013 ICEMS, Busan, South Korea.

  28. Cavagnino A, Lazzari M, Profumo F, Tenconi A (2000) Axial flux interior PM synchronous motor: parameters identification and steady-state performance measurements. IEEE Trans Ind Appl 36(6):1581–1588

    Google Scholar 

  29. Balda JC, Fairbrain RE, Harley RG, Rodgerson JL, Eiteberg E (1987) Measurement of synchronous machine parameters by a modified frequency response method—Part II: Measured results. IEEE Trans. Energy Convers. EC-2(4):646–651

    Google Scholar 

  30. Touhami O, Guesbaoui H, Iung C (1994) Synchronous machine parameter identification by a multitime scale technique. IEEE Trans Ind Appl 30(6):1600–1608

    Google Scholar 

  31. Dedene N, Pintelon R, Lataire P (2003) Estimation of a global synchronous machine model using a multiple-input multiple-output estimator. IEEE Trans Energy Convers 18(1):11–16

    Google Scholar 

  32. Senjyu T, Urasaki N, Simabukuro T, Uezato K (1998) Modelling and parameter measurement of salient-pole permanent magnet synchronous motors including stator iron loss. Math Comput Model Dyn Syst 4(3):219–230

    MATH  Google Scholar 

  33. Dutta R, Rahman MF (2006) A comparative analysis of two test methods of measuring d - and q -axes inductances of interior permanent-magnet machine. IEEE Trans Magn 42(11):3712–3718

    Google Scholar 

  34. Vandoorn TL, De Belie FM, Vyncke TJ, Melkebeek JA, Lataire P (2010) Generation of multisinusoidal test signals for the identification of synchronous-machine parameters by using a voltage-source inverter. IEEE Trans Ind Electron 57(1):430–439

    Google Scholar 

  35. Sun T, Kwon SO, Lee JJ, Hong JP (2009) An improved AC standstill method for testing inductances of interior PM synchronous motor considering cross-magnetizing effect. In Proceedings of IEEE Energy Conversion Congress and Exposition (ECCE-2009), San Jose, USA.

  36. Chiba A, Nakamura F, Fukao T, Rahman MA (1991) Inductances of cageless reluctance-synchronous machines having nonsinusoidal space distributions. IEEE Trans Ind Appl 27(1):44–51

    Google Scholar 

  37. Rahman KM, Hit S (2005) Identification of machine parameters of a synchronous motor. IEEE Trans Ind Appl 41(2):557–565

    Google Scholar 

  38. Nee H-P, Lefevre L, Thelin P, Soulard J (2000) Determination of d and q reactances of permanent-magnet synchronous motors without measurements of the rotor position. IEEE Trans Ind Appl 36(5):1330–1335

    Google Scholar 

  39. Choi C, Lee W, Kwon SO, Hong JP (2013) Experimental estimation of inductance for interior permanent magnet synchronous machine considering temperature distribution. IEEE Trans Magn 49(6):2990–2996

    Google Scholar 

  40. Schaible U, Szabados B (1999) Dynamic motor parameter identification for high speed flux weakening operation of brushless permanent magnet synchronous machines. IEEE Trans Energy Convers 14(3):486–492

    Google Scholar 

  41. Štumberger B, Kreča B, Hribernik B (1999) Determination of parameters of synchronous motor with permanent magnets from measurement of load conditions. IEEE Trans Energy Convers 14(4):1413–1416

    Google Scholar 

  42. Ertan HB, Şahin I (2012) Evaluation of inductance measurement methods for PM machines. In Proceedings of 2–12 XXth ICEM, Marseille, France.

  43. Lee J-Y, Lee S-H, Lee G-H, Hong J-P, Hur J (2006) Determination of parameters considering magnetic nonlinearity in an interior permanent magnet synchronous motor. IEEE Trans Magn 42(4):1303–1306

    Google Scholar 

  44. Meessen KJ, Thelin P, Soulard J, Lomonova EA (2008) Inductance calculations of permanent-magnet synchronous machines including flux change and self- and cross-saturations. IEEE Trans Magn 44(10):2324–2331

    Google Scholar 

  45. Vaseghi B, Takorabet N, Meibody-Tabar F (2009) Fault analysis and parameter identification of permanent-magnet motors by the finite-element method. IEEE Trans Magn 45(9):3290–3295

    MATH  Google Scholar 

  46. Kim WH, Kim MJ, Lee KD, Lee JJ, Han JH, Jeong TC, Cho SY, Lee J (2014) Inductance calculation in IPMSM considering magnetic saturation. IEEE Trans Magn 50(1):1–4

    Google Scholar 

  47. Chen YS, Zhu ZQ, Howe D (2005) Calculation of d- and q-axis inductances of PM brushless AC machines accounting for skew. IEEE Trans Magn 41(10):3940–3942

    Google Scholar 

  48. Fernández-Bernal F, García-Cerrada A, Faure R (2001) Determination of parameters in interior permanent-magnet synchronous motors with iron losses without torque measurement. IEEE Trans Ind Appl 37(5):1265–1272

    Google Scholar 

  49. Wang G, Qu L, Zhan H, Xu J, Ding L, Zhang G, Xu D (2014) Self-commissioning of permanent magnet synchronous machine drives at standstill considering inverter nonlinearities. IEEE Trans Power Electron 29(12):6615–6627

    Google Scholar 

  50. Gao Y, Qu R, Chen Y, Li J, Xu W (2014) Review of off-line synchronous inductance measurement method for permanent magnet synchronous machines. In Proceedings of ITEC Asia-Pacific, Beijing, China.

  51. Tadokoro D, Morimoto S, Inoue Y, and Sanada M (2014) Method for auto-tuning of current and speed controller in IPMSM drive system based on parameter identification. In Proceedings of IPEC-Hiroshima 2014 - ECCE ASIA, Hiroshima, Japan.

  52. Morimoto S, Sanada M, Takeda Y (2006) Mechanical sensorless drives of ipmsm with online parameter identification. IEEE Trans Ind Appl 42(5):1241–1248

    Google Scholar 

  53. Yoshimi M, Hasegawa M, and Matsui K (2010) Parameter identification for IPMSM position sensorless control based on unknown input observer. In Proceedings of ISIEA, Penang, Malaysia.

  54. Ichikawa S, Tomitat M, Doki S, Okuma S (2006) Sensorless control of synchronous reluctance motors based on extended emf models considering magnetic saturation with online parameter identification. IEEE Trans Ind Appl 42(5):1264–1274

    Google Scholar 

  55. Inoue Y, Kawaguchi Y, Morimoto S, Sanada M (2011) Performance improvement of sensorless ipmsm drives in a low-speed region using online parameter identification. IEEE Trans Ind Appl 47(2):798–804

    Google Scholar 

  56. Inoue Y, Yamada K, Morimoto S, Sanada M (2009) Effectiveness of voltage error compensation and parameter identification for model-based sensorless control of IPMSM. IEEE Trans Ind Appl 45(1):213–221

    Google Scholar 

  57. Ichikawa S, Tomita M, Doki S, Okuma S (2006) Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory. IEEE Trans Ind Electron 53(2):363–372

    Google Scholar 

  58. Nguyen QK, Petrich M, and Roth-Stielow J (2014) Implementation of the MTPA and MTPV control with online parameter identification for a high speed IPMSM used as traction drive. In Proceedings of IPEC-Hiroshima 2014 - ECCE ASIA, Hiroshima, Japan.

  59. Weijie L, Dongliang L, Qiuxuan W, Lili C, and Xiaodan Z (2016) A novel deadbeat-direct torque and flux control of IPMSM with parameter identification. In Proceedings of EPE’16 ECCE Europe, Karlsruhe, Germany.

  60. Underwood SJ, Husain I (2010) Online parameter estimation and adaptive control of permanent-magnet synchronous machines. IEEE Trans Ind Electron 57(7):2435–2443

    Google Scholar 

  61. Phowanna P, Boonto S, Konghirun M (2015) Online parameter identification method for IPMSM drive with MTPA. In Proceedings of 2015 18th ICEMS, Pattaya, Thailand.

  62. Kim S, Lee H, Kim K, Bae J, Im J, Kim C, Lee J (2009) Torque ripple improvement for interior permanent magnet synchronous motor considering parameters with magnetic saturation. IEEE Trans Magn 45(10):4720–4723

    Google Scholar 

  63. Xu Y, Parspour N, Vollmer U (2014) Torque rippleminimization using online estimation of the stator resistances with consideration of magnetic saturation. IEEE Trans Ind Electron 61(9):5105–5114

    Google Scholar 

  64. Le LX, Wilson WJ (1988) Synchronous machine parameter identification: a time domain approach. IEEE Trans Energy Convers 3(2):241–248

    Google Scholar 

  65. Mouni E, Tnani S, Champenois G (2008) Synchronous generator modelling and parameters estimation using least squares method. Simul Model Pract Theory 16(6):678–689

    Google Scholar 

  66. Gatto G, Marongiu I, Serpi A (2013) Discrete-time parameter identification of a surface-mounted permanent magnet synchronous machine. IEEE Trans Ind Electron 60(11):4869–4880

    Google Scholar 

  67. Piippo A, Hinkkanen M, Luomi J (2009) Adaptation of motor parameters in sensorless PMSM drives. IEEE Trans Ind Appl 45(1):203–212

    Google Scholar 

  68. Boileau T, Leboeuf N, Nahid-Mobarakeh B, Meibody-Tabar F (2011) Online identification of PMSM parameters: parameter identifiability and estimator comparative study. IEEE Trans Ind Appl 47(4):1944–1957

    Google Scholar 

  69. An Q, Sun L (2008) On-line parameter identification for vector controlled PMSM drives using adaptive algorithm. In Proceedings of VPPC, Harbin, China.

  70. Shi Y, Sun K, Huang L, Li Y (2012) Online identification of permanent magnet flux based on extended kalman filter for IPMSM drive with position sensorless control. IEEE Trans Ind Electron 59(11):4169–4178

    Google Scholar 

  71. Hamida MA, De Leon J, Glumineau A, Boisliveau R (2013) An adaptive interconnected observer for sensorless control of pmsynchronous motorswith online parameter identification. IEEE Trans Ind Electron 60(2):739–748

    Google Scholar 

  72. Mohamed YARI, Lee TK (2006) Adaptive self-tuning MTPA vector controller for IPMSM drive system. IEEE Trans Energy Convers 21(3):636–644

    Google Scholar 

  73. Liu K, Zhu ZQ, Zhang Q, Zhang J (2012) Influence of nonideal voltage measurement on parameter estimation in permanent-magnet synchronous machines. IEEE Trans Ind Electron 59(6):2438–2447

    Google Scholar 

  74. Hasegawa M, Matsui K (2009) Position sensorless control for interior permanent magnet synchronous motor using adaptive flux observer with inductance identification. IET Electr Power Appl 3(3):209–217

    Google Scholar 

  75. Boileau T, Nahid-Mobarakeh B, Meibody-Tabar F (2008) On-line Identification of PMSM parameters: model-reference vs EKF. In Proceedings of IEEE IAS Annu. Meeting, Edmonton, Canada.

  76. Ohnishi K, Matsui N, Hori Y (1994) Estimation, identification, and sensorless control in motion control system. Proc IEEE 82(8):1253–1265

    Google Scholar 

  77. Liu L, Cartes DA (2007) Synchronisation based adaptive parameter identification for permanent magnet synchronous motors. IET Control Theory Appl 1(4):1015–1022

    Google Scholar 

  78. Keerthi VD, Kumar JSVS (2013) Model reference adaptive control based parameters estimation of permanent magnet synchronous motor drive. Int J Appl or Innov Eng Manag 2(8):267–275

    Google Scholar 

  79. Kumar R, Gupta RA, Bansal AK (2007) Identification and control of PMSM using artificial neural network. In Proceedings of 2007 ISIE, Vigo, Spain.

  80. Liu K, Zhang Q, Chen J, Zhu ZQ, Zhang J (2011) Online multiparameter estimation of nonsalient-pole PM synchronous machines with temperature variation tracking. IEEE Trans Ind Electron 58(5):1776–1788

    Google Scholar 

  81. Liu K, Zhu ZQ (2014) Online estimation of the rotor flux linkage and voltage-source inverter nonlinearity in permanent magnet synchronous machine drives. IEEE Trans Power Electron 29(1):418–427

    Google Scholar 

  82. Liu K, Zhu ZQ, Stone DA (2013) Parameter estimation for condition monitoring of PMSM stator winding and rotor permanent magnets. IEEE Trans Ind Electron 60(12):5902–5913

    Google Scholar 

  83. Qin H, Liu K, Zhang Q, Shen A, Zhang J (2010) Online estimating voltage source inverter nonlinearity for PMSM by adaline neural network. In Proceedings of 2010 BIC-TA, Changsha, China.

  84. Rahman M, Hoque MA (1998) On-line adaptive artificial neural network based vector control of permanent magnet synchronous motors. IEEE Trans Energy Convers 13(4):311–318

    Google Scholar 

  85. Liu T, Husain I, Elbuluk M (1998) Torque ripple minimization with on-line parameter estimation using neural networks in permanent magnet synchronous motors. In Proceedings of 1998 IEEE Ind. Appl. Conf., St. Louis, USA.

  86. Sim H, Lee J, Lee K (2014) On-line parameter estimation of interior permanent magnet synchronous motor using an extended kalman filter. J Electr Eng Technol 9(2):600–608

    Google Scholar 

  87. Song W, Shi SS, Chao C, Gang Y, Qu ZJ (2009) Identification of PMSM based on EKF and elman neural network. In Proceedings of 2009 ICAL, Shenyang, China.

  88. Bolognani S, Tubiana L, Zigliotto M (2003) Extended kalman filter tuning in sensorless PMSM drives. IEEE Trans Ind Appl 39(6):1741–1747

    Google Scholar 

  89. Mwasilu F, Jung JW (2016) Enhanced fault-tolerant control of interior PMSMs based on an adaptive EKF for EV traction applications. IEEE Trans Power Electron 31(8):5746–5758

    Google Scholar 

  90. Dhaouadi R, Mohan N, Norum L (1991) Design and implementation of an extended kalman filter for the state estimation of a permanent magnet synchronous motor. IEEE Trans Power Electron 6(3):491–497

    Google Scholar 

  91. Dang DQ, Rafaq MS, Choi HH, Jung J-W (2016) Online parameter estimation technique for adaptive control applications of interior PM synchronous motor drives. IEEE Trans Ind Electron 63(3):1438–1449

    Google Scholar 

  92. Rafaq MS, Mwasilu F, Kim J, Ho Choi H, Jung J-W (2017) Online parameter identification for model-based sensorless control of interior permanent magnet synchronous machine. IEEE Trans Power Electron 32(6):4631–4643

    Google Scholar 

  93. Kulkarni AB, Ehsani M (1992) A novel position sensor elimination technique for the interior permanent-magnet synchronous motor drive. IEEE Trans Ind Appl 28(1):144–150

    Google Scholar 

  94. Lee SB (2006) Closed-loop estimation of permanent magnet synchronous motor parameters by PI controller gain tuning. IEEE Trans Energy Convers 21(4):863–870

    Google Scholar 

  95. Ogasawara S, Akagi H (1998) An approach to real-time position estimation at zero and low speed for a PM motor based on saliency. IEEE Trans Ind Appl 34(1):163–168

    Google Scholar 

  96. Ogasawara S, Akagi H (1998) Implementation and position control performance of a IPM motor drive system based on magnetic saliency. IEEE Trans Ind Appl 34(4):806–812

    Google Scholar 

  97. Kim S-I, Im J-H, Song E-Y, Kim R-Y (2016) A new rotor position estimation method of IPMSM using all-pass filter on high-frequency rotating voltage signal injection. IEEE Trans Ind Electron 63(10):6499–6509

    Google Scholar 

Download references

Funding

This work is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 20CTAP-C151867-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyungwoo Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, H., Park, H., Kim, C. et al. A Review of State-of-the-art Techniques for PMSM Parameter Identification. J. Electr. Eng. Technol. 15, 1177–1187 (2020). https://doi.org/10.1007/s42835-020-00398-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-020-00398-6

Keywords

Navigation