Skip to main content

Advertisement

Log in

A comparative study of the compressive strengths and microstructural properties of geopolymer cements from metakaolin and waste fired brick as aluminosilicate sources

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The main target of this work is to compare the compressive strengths and the microstructural properties geopolymer cements from waste fired brick as low-value aluminosilicate-rich waste and metakaolin. The chemical reagent used in this investigation is a sodium waterglass from rice husk ash. The obtained results show that waste fired brick contains a higher amount of SiO2 (60.98 wt%). The quartz content in the waste fired brick, standard and local metakaolins was estimated at approximately 8, 2 and 8 wt%, respectively. The X-ray patterns of these aluminosilicates indicate the broad hump structure between 15 and 35° (2θ) corresponding to the amorphous aluminosilicate phase. Besides this amorphous phase, waste fired brick shows the broad bands of hematite at 33.29 and 35.87° (2θ) indicating that some Al is replaced by Fe in IV-fold coordination. The micrographs of metakaolins show the platy-shaped with coarse-grain particles and the one of waste fired bricks indicates the platy- and spherical-shaped with smaller particle sizes. The compressive strength values of geopolymer cements from local and standard metakaolins are 40.32 and 44.46 MPa, respectively. Whereas the one from waste fired brick is 47.82 MPa. It was found that waste fired brick could be used as an alternative low-value aluminosilicate-rich waste for producing geopolymer cements with high compressive strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Reig, M.M. Tashima, M.V. Borrachero, J. Monzó, C.R. Cheeseman, J. Payá, Properties and microstructure of alkali-activated red clay brick waste. Constr. Build. Mater. 43, 98–106 (2013)

    Article  Google Scholar 

  2. K. Gao, K.-L. Lin, D.Y. Wang, C.-L. Hwang, H.-S. Shiu, Y.-M. Chang, T.-W. Cheng, Effects SiO2/Na2O molar ratio on mechanical properties and the microstructure of nano-SiO2 metakaolin-based geopolymers. Constr. Build. Mater. 53, 503–510 (2014)

    Article  Google Scholar 

  3. N. Youssef, A.Z. Rabenantoandro, Z. Dakhli, C. Chapiseau, F. Waendendries, F.H. Chehade, Z. Lafhaj, Reuse of waste bricks: a new generation of geopolymer bricks. SN Appl. Sci. 1, 1252 (2019)

    Article  CAS  Google Scholar 

  4. V. Wongsa, P. Sata, P. Nuaklong, Chindaprasirt, Use of crushed clay brick and pumice aggregates in lightweight geopolymer concrete. Constr. Build. Mater. 188, 1025–1034 (2018)

    Article  CAS  Google Scholar 

  5. M.C. Naceri, Hamina, Use of waste brick as a partial replacement of cement in mortar. Waste Manag. 29, 2378–2384 (2009)

    Article  CAS  Google Scholar 

  6. A.A. Aliabdo, M. Abd-Elmoaty, H.H. Hassan, Utilization of crushed clay brick in concrete industry. Alex. Eng. J. 53, 151–168 (2014)

    Article  Google Scholar 

  7. H. Cheng, Reuse research progress on waste clay brick. Procedia Environ. Sci. 31, 218–226 (2016)

    Article  Google Scholar 

  8. R.A. Robayo-Salazar, J.M. Mejía-Arcila, R. Mejía de Gutierrez, Eco-efficient alkali-activated cement based on red clay brick wastes suitable for the manufacturing of building materials. J. Clean. Prod. 166, 242–252 (2017)

    Article  CAS  Google Scholar 

  9. L.M. Beleuk à Moungam, H. Mohamed, E. Kamseu, N. Billong, U.C. Melo, Properties of geopolymers made from fired clay bricks wastes and rice husk ash (RHA)-sodium hydroxide (NaOH) activator. Mater. Sci. Appl. 8, 537–552 (2017)

    Google Scholar 

  10. C.N. Bewa, H.K. Tchakouté, C. Banenzoué, L. Cakanou, T.T. Mbakop, E. Kamseu, C.H. Rüscher, Acid-based geopolymers using waste fired brick and different metakaolins as raw materials. Appl. Clay Sci. 198, 105813 (2020)

    Article  CAS  Google Scholar 

  11. H.K. Tchakouté, C.N. Bewa, N.A. Kesseng, C.H. Rüscher, E. Kamseu, F. Andreola, N.B. Ali, C. Leonelli, Production of porous poly(phospho-siloxo) networks for thermal insulations using low-value calcium-rich wastes as pore-forming agents. Waste Biomass Valor (2019). https://doi.org/10.1007/s12649-019-00846-z

    Article  Google Scholar 

  12. H.K. Tchakouté, S.J.K. Melele, A.T. Djamen, C.R. Kaze, E. Kamseu, C.N.P. Nanseu, C. Leonelli, C.H. Rüscher, Microstructural and mechanical properties of poly(sialate-siloxo) networks obtained using metakaolins from kaolin and halloysite as aluminosilicate sources: a comparative study. Appl. Clay Sci. 186, 105448 (2020)

    Article  Google Scholar 

  13. D.E.T. Mabah, H.K. Tchakouté, C.H. Rüscher, E. Kamseu, A. Elimbi, C. Leonelli, Design of low-cost semi-crystalline calcium silicate from biomass for the improvement of the mechanical and microstructural properties of metakaolin-based geopolymer cements. Mater. Chem. Phys. 223, 98–108 (2019)

    Article  Google Scholar 

  14. D.E.T. Mabah, H.K. Tchakouté, D. Fotio, C.H. Rüscher, E. Kamseu, M.C. Bignozzi, C. Leonelli, Influence of the molar ratios CaO/SiO2 contained in the sustainable microcomposites on the mechanical and microstructural properties of (Ca, Na)-poly(sialate-siloxo) networks. Mater. Chem. Phys. 238, 121928 (2019)

    Article  CAS  Google Scholar 

  15. H.K. Tchakouté, D.E.T. Mabah, C.H. Rüscher, E. Kamseu, F. Andreola, M.C. Bignozzi, C. Leonelli, Preparation of low-cost nano and microcomposites from chicken eggshell, nano-silica and rice husk ash and their utilisations as additives for producing geopolymer cements. J. Asian Ceram. Soc. 8, 149–161 (2020)

    Article  Google Scholar 

  16. H.K. Tchakouté, C.H. Rüscher, S. Kong, E. Kamseu, C. Leonelli, Comparison of metakaolin-based geopolymer cements from commercial sodium waterglass and sodium waterglass from rice husk ash. J. Sol-Gel Sci. Technol. 78, 492–506 (2016)

    Article  Google Scholar 

  17. C. Njoya, C. Nkoumbou, D. Grosbois, D. Njopwouo, A. Njoya, J. Courtin-Nomade, F. Yvon, Martin, Genesis of Mayouom kaolin deposit (Western Cameroon). Appl. Clay Sci. 32, 125–140 (2006)

    Article  CAS  Google Scholar 

  18. J. Kurczewska, P. Pecyna, M. Ratajczak, M. Gaje, G. Schroeder, Halloysite nanotubes as carriers of vancomycin in alginate-based wound dressing. Saudi Pharm. J. 25, 911–920 (2017)

    Article  Google Scholar 

  19. Y. Li, Y. Zhang, Y. Zhang, M. Liu, F. Zhang, L. Wang, Thermal behavior analysis of halloysite selected from Inner Mongolia Autonomous Region in China. J. Therm. Anal. Calor. 129, 1333–1339 (2017)

    Article  CAS  Google Scholar 

  20. Z. Zuhua, Y. Xiao, Z. Huajun, C. Yue, Role of water in the synthesis of calcined kaolin-based geopolymer. Appl. Clay Sci. 43, 218–223 (2009)

    Article  CAS  Google Scholar 

  21. S.J.K. Melele, H.K. Tchakouté, C. Banenzoué, E. Kamseu, C.H. Rüscher, F. Andreola, C. Leonelli, Investigation of the relationship between the condensed structure and the chemically bonded water content in the poly(sialate-siloxo) network. Appl. Clay Sci. 156, 77–86 (2018)

    Article  CAS  Google Scholar 

  22. M.A.M. Al Bakri, H. Kamarudin, A.K. Omar, M.N. Norazian, C.M. Ruzaidi, A.R. Rafiza, The effect of alkaline activator ratio on the compressive strength of fly ash-based geopolymers. Aust. J. Basic Appl. Sci. 5, 1916–1922 (2011)

    Google Scholar 

  23. A. Fernández-Jiménez, I. Palomo, J. Sobrados, Sanz, The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous Mesoporous Mater. 91, 111–119 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Tchakouté Kouamo Hervé gratefully acknowledges the Alexander von Humboldt Foundation for its financial support this work under Grant No. KAM/1155741 GFHERMES-P. The authors would like to thank Dr. Valerie Petrov for SEM observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Kouamo Tchakouté.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riyap, H.I., Banenzoué, C., Tchakouté, H.K. et al. A comparative study of the compressive strengths and microstructural properties of geopolymer cements from metakaolin and waste fired brick as aluminosilicate sources. J. Korean Ceram. Soc. 58, 236–247 (2021). https://doi.org/10.1007/s43207-020-00097-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-020-00097-y

Keywords

Navigation