Skip to main content

Advertisement

Log in

Carbon and graphite coating on Cu(OH)2 nanowires as high-performance supercapacitor electrode

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Copper hydroxide nanowires (CHNWs) prepared by chemical etching process, were covered by graphite and carbon coating, to form hybrid supercapacitor electrodes. The carbon coating deposited by coconut soot, and the graphite coating was employed using the electrophoresis deposition method with no interaction steps. The results show that the specific capacitance of CHNWs is 40.2 F/cm3, which has an energy and power density of 3.6 Wh/cm2 and 80.9 W/cm2, respectively. Covering the surface of CHNWs by carbon increased the capacitance of the electrode to 114.7 F/cm2 while the graphite coating enhanced the capacitance to 96.7 F/cm2. According to the FE-SEM observations, carbon uniformly covered the nanowires surface and a higher capacity is achieved in this sample. This sample showed energy density and power density of 10.2 Wh/cm2 and 162.9 W/cm2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Zhao, Z. Shao, H. Zhang, Influence of composite ratio on Ni/CO composite oxide supercapacitor. Mater. Manuf. Process 35(2), 195–201 (2020)

    Article  CAS  Google Scholar 

  2. K. Wang, H. Wu, Y. Meng, Z. Wei, Conducting polymer nanowire arrays for high performance supercapacitors. Small 10(1), 14–31 (2014)

    Article  CAS  Google Scholar 

  3. C. Zhao, Q. Wang, H. Zhang, S. Passerini, X. Qian, Two-dimensional titanium carbide/RGO composite for high-performance supercapacitors. ACS App. Mat. Inter. 8(24), 15661–15667 (2016)

    Article  CAS  Google Scholar 

  4. G.M. Jacob, Q.M. Yang, I. Zhitomirsky, Electrodes for electrochemical supercapacitors. Mater. Manuf. Process 24(12), 1359–1364 (2009)

    Article  CAS  Google Scholar 

  5. M. Zeraati, K. Tahmasebi, Supercapacitor behavior of SiC coated copper hydroxide and copper sulfide nano-wires. J. Alloys Compd. 786, 798–807 (2019)

    Article  CAS  Google Scholar 

  6. P.C. Chen, G. Shen, Y. Shi, H. Chen, C. Zhou, Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 4(8), 4403–4411 (2010)

    Article  CAS  Google Scholar 

  7. Y. Liu, X. Cao, L. Cui, Y. Zhong, R. Zheng, D. Wei, C. Barrow, J.M. Razal, W. Yang, J. Liu, Zn-Ni-CO trimetallic carbonate hydroxide nanothorns branched on Cu (OH) 2 nanorods array based on Cu foam for high-performance asymmetric supercapacitors. J. Pow. Sourc. 437, 226897 (2019)

    Article  CAS  Google Scholar 

  8. C.Y. Lee, Syntheses, characterisation and electrochemical properties of C70-metal cluster complexes. J. Chem. Res. 37(5), 257–262 (2013)

    Article  CAS  Google Scholar 

  9. N.C. Maile, R.T. Patil, S.K. Shinde, D.-Y. Kim, A.V. Fulari, D.S. Lee, V.J. Fulari, Facial growth of CO(OH)2 nanoflakes on stainless steel for supercapacitors: effect of deposition potential. J. Mater. Sci.: Mater. Electron. 30, 5555–5566 (2019)

    CAS  Google Scholar 

  10. S. Gao, Y. Sun, F. Lei, L. Liang, J. Liu, W. Bi, Y. Xie, Ultrahigh energy density realized by a single-layer β-Co (OH)2 all-solid-state asymmetric supercapacitor. Ang. Chem. Int. Ed. 53(47), 12789–12793 (2014)

    Article  CAS  Google Scholar 

  11. S. Parveen, S.S. Raut, M.K. Tiwari, B.R. Sankapal, S.N. Pandey, Flexible iron-doped Sr (OH)2 fibre wrapped tuberose for high-performance supercapacitor electrode. J. Alloys Compd. 781, 831–841 (2019)

    Article  Google Scholar 

  12. U.S. Chavan, P.E. Lokhande, S. Bhosale, Nickel hydroxide nanosheets grown on nickel foam for high performance supercapacitor applications. Mater. Tech. (2021). https://doi.org/10.1080/10667857.2021.1873636

    Article  Google Scholar 

  13. J. Shin, J.K. Seo, R. Yaylian, A. Huang, Y.S. Meng, A review on mechanistic understanding of MnO2 in aqueous electrolyte for electrical energy storage systems. Int. Mater. Rev. 65(6), 356–387 (2020)

    Article  CAS  Google Scholar 

  14. J.A. Argüello, J.M. Rojo, R. Moreno, Electrophoretic deposition of manganese oxide and graphene nanoplatelets on graphite paper for the manufacture of supercapacitor electrodes. Elec. Acta 294, 102–109 (2019)

    Article  Google Scholar 

  15. J. Chen, J. Xu, S. Zhou, N. Zhao, C.P. Wong, Facile and scalable fabrication of three-dimensional Cu (OH)2 nanoporous nanorods for solid-state supercapacitors. J. Mat. Chem. A 3(33), 17385–17391 (2015)

    Article  CAS  Google Scholar 

  16. A. Pramanik, S. Maiti, S. Mahanty, Reduced graphene oxide anchored Cu(OH)2 as a high performance electrochemical supercapacitor. Dalton Trans. 44(33), 14604–14612 (2015)

    Article  CAS  Google Scholar 

  17. Y.J. Yang, E.H. Liu, L.M. Li, Z.Z. Huang, H.J. Shen, X.X. Xiang, Nanostructured MnO2/exfoliated graphite composite electrode as supercapacitors. J. Alloys Compd. 487(1–2), 564–567 (2009)

    Article  CAS  Google Scholar 

  18. S. Park, S. Kim, Effect of carbon blacks filler addition on electrochemical behaviors of CO3O4/graphene nanosheets as a supercapacitor electrodes. Elec. Acta 89, 516–522 (2013)

    Article  CAS  Google Scholar 

  19. B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, High performance supercapacitor based on carbon coated V2O5 nanorods. J. Elec. Chem. 758, 111–116 (2015)

    CAS  Google Scholar 

  20. R.R. Devarapalli, S. Szunerits, Y. Coffinier, M.V. Shelke, R. Boukherroub, Glucose-derived porous carbon-coated silicon nanowires as efficient electrodes for aqueous micro-supercapacitors. ACS App. Mat. Int. 8(7), 4298–4302 (2016)

    Article  CAS  Google Scholar 

  21. Y. Wang, L. Jiang, Y. Wang, Development of candle soot based carbon nanoparticles (CNPs)/polyaniline electrode and its comparative study with CNPs/MnO2 in supercapacitors. Elec. Acta 210, 190–198 (2016)

    Article  CAS  Google Scholar 

  22. D. He, G. Wang, G. Liu, J. Bai, H. Suo, C. Zhao, Facile route to achieve mesoporous Cu(OH)2 nanorods on copper foam for high-performance supercapacitor electrode. J. Alloys Compd. 699, 706–712 (2017)

    Article  CAS  Google Scholar 

  23. M. Abdollahifar, S.S. Huang, Y.H. Lin, Y.C. Lin, B.Y. Shih, H.S. Sheu, N.L. Wu, High-performance carbon-coated ZnMn2O4 nanocrystallite supercapacitors with tailored microstructures enabled by a novel solution combustion method. J. Pow. Sour. 378, 90–97 (2018)

    Article  CAS  Google Scholar 

  24. X. Lv, G. Li, H. Zhou, D. Li, J. Zhang, Z. Pang, Q. Wei, Novel freestanding N-doped carbon coated Fe3O4 nanocomposites with 3D carbon fibers network derived from bacterial cellulose for supercapacitor application. J. Elec. Chem. 810, 18–26 (2018)

    CAS  Google Scholar 

  25. C. Li, P. He, L. Jia, X. Zhang, T. Zhang, F. Dong, H. Liu, Facile synthesis of 3D CuS micro-flowers grown on porous activated carbon derived from pomelo peel as electrode for high-performance supercapacitors. Elec. Acta 299, 253–261 (2019)

    Article  CAS  Google Scholar 

  26. D. Zhu, M. Yan, R. Chen, Q. Liu, J. Liu, J. Yu, J. Wang, 3D Cu(OH)2 nanowires/carbon cloth for flexible supercapacitors with outstanding cycle stability. Chem. Eng. J. 371, 348–355 (2019)

    Article  CAS  Google Scholar 

  27. J. Zhao, B. Tang, J. Cao, J. Feng, P. Liu, J. Zhao, J. Xu, Effect of hydrothermal temperature on the structure and electrochemical performance of manganese compound/ordered mesoporous carbon composites for supercapacitors. Mater. Manuf. Process 27(2), 119–124 (2012)

    Article  CAS  Google Scholar 

  28. B. De, S. Banerjee, K.D. Verma, T. Pal, P.K. Manna, K.K. Kar, Carbon nanotube as electrode materials for supercapacitors, in Handbook of nanocomposite supercapacitor materials II. (Springer, Cham, 2020), pp. 229–243

    Chapter  Google Scholar 

  29. Z. Zhai, Y. You, L. Ma, D. Jiang, F. Li, H. Yuan, W. Shen, One-step in situ self-assembly of cypress leaf-like Cu(OH)2 nanostructure/graphene nanosheets composite with excellent cycling stability for supercapacitors. Nano. Res. Let. 14(1), 1–7 (2019)

    Article  CAS  Google Scholar 

  30. W. Shi, X. Zhang, S. Li, B. Zhang, M. Wang, Y. Shen, Carbon coated Cu2O nanowires for photo-electrochemical water splitting with enhanced activity. App. Surf. Sci. 358, 404–411 (2015)

    Article  CAS  Google Scholar 

  31. Y. Ma, D. Zhao, Y. Chen, J. Huang, Z. Zhang, X. Zhang, B. Zhang, A novel core-shell polyaniline/graphene oxide/copper nanocomposite for high performance and low-cost supercapacitors. Chem. Pap. 73(1), 119–129 (2019)

    Article  CAS  Google Scholar 

  32. S. Sepahvand, S. Ghasemi, Z. Sanaee, Electric field enhanced synthesis of copper hydroxide nanostructures for supercapacitor application. NANO 12(01), 1750010 (2017)

    Article  CAS  Google Scholar 

  33. S. Lei, Y. Liu, L. Fei, R. Song, W. Lu, L. Shu, H. Huang, Commercial Dacron cloth supported Cu(OH)2 nanobelt arrays for wearable supercapacitors. J. Mat. Chem. A 4(38), 14781–14788 (2016)

    Article  CAS  Google Scholar 

  34. Y. You, M. Zheng, L. Ma, X. Yuan, B. Zhang, Q. Li, W. Shen, Galvanic displacement assembly of ultrathin CO3O4 nanosheet arrays on nickel foam for a high-performance supercapacitor. Nanotechnology 28(10), 105604 (2017)

    Article  Google Scholar 

  35. P. Xu, K. Ye, M. Du, J. Liu, K. Cheng, J. Yin, D. Cao, One-step synthesis of copper compounds on copper foil and their supercapacitive performance. RSC Adv. 5(46), 36656–36664 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Mrs. Malihe Zeraati for her valuable contributions and guidance in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Tahmasebi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaleghi, A.H., Tahmasebi, K. & Irannejad, A. Carbon and graphite coating on Cu(OH)2 nanowires as high-performance supercapacitor electrode. J. Korean Ceram. Soc. 59, 104–112 (2022). https://doi.org/10.1007/s43207-021-00157-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00157-x

Keywords

Navigation