Skip to main content
Log in

Drug release behaviour and mechanism from unmodified and in situ modified bacterial cellulose

  • Original Paper
  • Published:
Proceedings of the Indian National Science Academy Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) is a suitable drug delivery carrier owing to the nanofibrous micro and mesoporous structure. One of the unique aspects is the tunability of BC microstructure by the addition of certain additives in the growth medium during the synthesis of cellulose by bacteria. In the present work, BC was in situ modified by adding Polyethylene glycol 2000 (PEG 2000). Effect of in situ modification on crystallinity, chemical composition, microstructure and morphology and, porosity was studied by XRD, FTIR, SEM and BET, followed by the effect on drug (Diclofenac sodium) loading and release kinetics. As a non-incorporating in situ modifier, PEG2000 increased the overall porosity, pore volume and decreased the specific surface area with no significant effect on crystallinity. In vitro, drug release studies revealed that a huge burst release for PEG modified BC as compared to pristine BC. The mechanism of release is further investigated by mathematical modelling. This work opens up avenues of exploring the wide possibility of tuning immediate and sustained drug release from bacterial cellulose for various release applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adepu, S., Khandelwal, M.: Broad-spectrum antimicrobial activity of bacterial cellulose silver nanocomposites with sustained release. J. Mater. Sci. 53, 1596–1609 (2018)

    Article  CAS  Google Scholar 

  • Adepu, S., Gaydhane, M.K., Kakunuri, M., Sharma, C.S., Khandelwal, M., et al.: Effect of micropatterning induced surface hydrophobicity on drug release from electrospun cellulose acetate nanofibers. Appl. Surf. Sci. 426, 755–762 (2017)

    Article  CAS  Google Scholar 

  • Brown, E.E., Laborie, M.-P.G.: Bioengineering bacterial cellulose/poly (ethylene oxide) nanocomposites. Biomacromol 8, 3074–3081 (2007)

    Article  CAS  Google Scholar 

  • Cacicedo, M.L., León, I.E., Gonzalez, J.S., Porto, L.M., Alvarez, V.A., et al.: Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells. Colloids Surf. B 140, 421–429 (2016)

    Article  CAS  Google Scholar 

  • Cheng, K.-C., Catchmark, J.M., Demirci, A.: Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 16, 1033–1045 (2009)

    Article  CAS  Google Scholar 

  • Cousins, S.K., Brown, R.M., Jr.: Cellulose I microfibril assembly: computational molecular mechanics energy analysis favours bonding by van der Waals forces as the initial step in crystallization. Polymer 36, 3885–3888 (1995)

    Article  CAS  Google Scholar 

  • De Lima, F.M., Meneguin, A.B., Tercjak, A., Gutierrez, J., Cury, B.S.F., et al.: Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties. Carbohydr. Polym. 179, 126–134 (2018)

    Article  Google Scholar 

  • Figueiredo, A.R., Silvestre, A.J., Neto, C.P., Freire, C.S.: In situ synthesis of bacterial cellulose/polycaprolactone blends for hot pressing nanocomposite films production. Carbohydr. Polym. 132, 400–408 (2015)

    Article  CAS  Google Scholar 

  • Gatenholm, P., Klemm, D.: Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull. 35, 208–213 (2010)

    Article  CAS  Google Scholar 

  • Gea, S., Bilotti, E., Reynolds, C., Soykeabkeaw, N., Peijs, T.: Bacterial cellulose–poly (vinyl alcohol) nanocomposites prepared by an in-situ process. Mater. Lett. 64, 901–904 (2010)

    Article  CAS  Google Scholar 

  • Grande, C.J., Torres, F.G., Gomez, C.M., Troncoso, O.P., Canet-Ferrer, J., et al.: Development of self-assembled bacterial cellulose–starch nanocomposites. Mater. Sci. Eng. C 29, 1098–1104 (2009)

    Article  CAS  Google Scholar 

  • Hermans, P., Weidinger, A.: Quantitative x-ray investigations on the crystallinity of cellulose fibers. A background analysis. J. Appl. Phys. 19, 491–506 (1948)

    Article  CAS  Google Scholar 

  • Heßler, N., Klemm, D.: Alteration of bacterial nanocellulose structure by in situ modification using polyethylene glycol and carbohydrate additives. Cellulose 16, 899–910 (2009)

    Article  Google Scholar 

  • Hong, K.H., Park, J.L., Sul, I.H., Youk, J.H., Kang, T.J.: Preparation of antimicrobial poly (vinyl alcohol) nanofibers containing silver nanoparticles. J. Polym. Sci. Part B 44, 2468–2474 (2006)

    Article  CAS  Google Scholar 

  • Huang, H.-C., Chen, L.-C., Lin, S.-B., Hsu, C.-P., Chen, H.-H.: situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour. Technol. 101, 6084–6091 (2010)

    Article  CAS  Google Scholar 

  • Huang, H.-C., Chen, L.-C., Lin, S.-B., Chen, H.-H.: Nano-biomaterials application: In situ modification of bacterial cellulose structure by adding HPMC during fermentation. Carbohydr. Polym. 83, 979–987 (2011)

    Article  CAS  Google Scholar 

  • Illa, M.P., Sharma, C.S., Khandelwal, M.: Tuning the physiochemical properties of bacterial cellulose: effect of drying conditions. J. Mater. Sci. 54, 12024–12035 (2019)

    Article  CAS  Google Scholar 

  • Jozala, A.F., de Lencastre-Novaes, L.C., Lopes, A.M., de Carvalho, S.-E., Mazzola, P.G., et al.: Bacterial nanocellulose production and application: a 10-year overview. Appl. Microbiol. Biotechnol. 100, 2063–2072 (2016)

    Article  CAS  Google Scholar 

  • Kai, A., Kobayashi, T.: Influence of poly (vinyl alcohol) on the structure of bacterial cellulose spherulite. Polym. J. 24, 131 (1992)

    Article  CAS  Google Scholar 

  • Khandelwal, M., Windle, A.H., Hessler, N.: In situ tunability of bacteria produced cellulose by additives in the culture media. J. Mater. Sci. 51, 4839–4844 (2016)

    Article  CAS  Google Scholar 

  • Klemm, D., Schumann, D., Kramer, F., Heßler, N., Hornung, M. et al.: Nanocelluloses as innovative polymers in research and application. In: Klemm, D. (eds) Polysaccharides II, vol. 205, pp. 49–96 (2006)

  • Nishiyama, Y.: Structure and properties of the cellulose microfibril. J. Wood Sci. 55, 241–249 (2009)

    Article  CAS  Google Scholar 

  • Nishiyama, Y., Kim, U.-J., Kim, D.-Y., Katsumata, K.S., May, R.P., et al.: Periodic disorder along ramie cellulose microfibrils. Biomacromol 4, 1013–1017 (2003a)

    Article  CAS  Google Scholar 

  • Nishiyama, Y., Sugiyama, J., Chanzy, H., Langan, P.: Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125, 14300–14306 (2003b)

    Article  CAS  Google Scholar 

  • Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K.: Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3, 10 (2010)

    Article  Google Scholar 

  • Pavaloiu, R.-D., Stoica, A., Stroescu, M., Dobre, T.: Controlled release of amoxicillin from bacterial cellulose membranes . Open Chem. 12, 962–967 (2014)

    Article  CAS  Google Scholar 

  • Pötzinger, Y., Kralisch, D., Fischer, D.: Bacterial nanocellulose: the future of controlled drug delivery? Ther. Deliv. 8, 753–761 (2017)

    Article  Google Scholar 

  • Ritger, P.L., Peppas, N.A.: A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Controlled Release 5, 37–42 (1987)

    Article  CAS  Google Scholar 

  • Ruka, D.R., Simon, G.P., Dean, K.M.: In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydr. Polym. 92, 1717–1723 (2013)

    Article  CAS  Google Scholar 

  • Seifert, M., Hesse, S., Kabrelian, V., Klemm, D.: Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium. J. Polym. Sci. Part A 42, 463–470 (2004)

    Article  CAS  Google Scholar 

  • Shao, W., Liu, H., Wang, S., Wu, J., Huang, M., et al.: Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Carbohydr. Polym. 145, 114–120 (2016)

    Article  CAS  Google Scholar 

  • Silva, N.H., Rodrigues, A.F., Almeida, I.F., Costa, P.C., Rosado, C., et al.: Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Carbohydr. Polym. 106, 264–269 (2014)

    Article  CAS  Google Scholar 

  • Subtaweesin, C., Woraharn, W., Taokaew, S., Chiaoprakobkij, N., Sereemaspun, A., et al.: Characteristics of curcumin-loaded bacterial cellulose films and anticancer properties against malignant melanoma skin cancer cells. Appl. Sci. 8, 1188 (2018)

    Article  Google Scholar 

  • Tokoh, C., Takabe, K.J., Fujita, M.: Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose 9, 65–74 (2002)

    Article  CAS  Google Scholar 

  • Trovatti, E., Freire, C.S., Pinto, P.C., Almeida, I.F., Costa, P., et al.: Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int. J. Pharm. 435, 83–87 (2012)

    Article  CAS  Google Scholar 

  • Uhlin, K.I., Atalla, R.H., Thompson, N.S.: Influence of hemicelluloses on the aggregation patterns of bacterial cellulose. Cellulose 2, 129–144 (1995)

    Article  CAS  Google Scholar 

  • Van Brakel, J., Heertjes, P.: Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor. Int. J. Heat Mass Transf. 17, 1093–1103 (1974)

    Article  Google Scholar 

  • Yang, J., Lv, X., Chen, S., Li, Z., Feng, C., et al.: situ fabrication of a microporous bacterial cellulose/potato starch composite scaffold with enhanced cell compatibility. Cellulose 21, 1823–1835 (2014)

    Article  CAS  Google Scholar 

  • Zhijiang, C., Chengwei, H., Guang, Y.: Poly (3-hydroxubutyrate-co-4-hydroxubutyrate)/bacterial cellulose composite porous scaffold: preparation, characterization and biocompatibility evaluation. Carbohydr. Polym. 87, 1073–1080 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support of DST-FAST TRACK grant SB/FTP/ETA-0073/2014. Authors also thank Indian Institute of Technology, Hyderabad for providing necessary research infrastructure to carry out this work, with special thanks to Ms Alekhya Kunamalla, doctoral student, Chemical Engineering, IIT Hyderabad for her help in BET analysis.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Mudrika Khandelwal.

Ethics declarations

Conflict of interest

There are no conflicts of interest exist for the authors with the submitted work.

Additional information

This article is part of the Special Issue: Indian National Young Academy of Science (INYAS).

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adepu, S., Khandelwal, M. Drug release behaviour and mechanism from unmodified and in situ modified bacterial cellulose. Proc.Indian Natl. Sci. Acad. 87, 110–120 (2021). https://doi.org/10.1007/s43538-021-00012-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43538-021-00012-x

Keywords

Navigation