Skip to main content
Log in

Recent progress in CFD for naval architecture and ocean engineering

  • Review article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

An overview is provided of CFDShip-Iowa modeling, numerical methods and high performance computing (HPC), including both current V4.5 and V5.5 and next generation V6. Examples for naval architecture highlight capability and needs. High fidelity V6 simulations for ocean engineering and fundamental physics describe increased resolution for analysis of physics of fluids. Uncertainty quantification research is overviewed as the first step towards development stochastic optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. STERN F., YANG J. and WANG Z. et al. Computational ship hydrodynamics: Nowadays and way forward[J]. International Ship Building Progress, 2013, 60(1–4): 3–105.

    Google Scholar 

  2. ITTC2011. The specialist committee on computational fluid dynamics[C]. Proceedings of 26th International Towing Tank Conference. Rio de Janeiro, Brazil, 2011.

    Google Scholar 

  3. CAMPANA E. F. Ship design under uncertainty via high-fidelity stochastic optimization[C]. Proceedings of Annual General Meeting of the Schiffbautechnische Gesellschaft E.V. Berlin, Germany, 2013.

    Google Scholar 

  4. HUANG J., CARRICA P. M. and STERN F. Semi-coupled air/water immersed boundary approach for curvilinear dynamic overset grids with application to ship hydrodynamics[J]. International Journal for Numerical Methods in Fluids, 2008, 58(6): 591–624.

    Article  Google Scholar 

  5. YANG J., STERN F. Sharp interface immersed-boundary/level-set method for wave-body interactions[J]. Journal of Computational Physics, 2009, 228(17): 6590–6616.

    Article  MathSciNet  Google Scholar 

  6. Wang Z., SUH J. and YANG J. et al. Sharp interface LES of breaking waves by an interface piercing body in orthogonal curvilinear coordinates[R]. AIAA paper 2012–1111, 2012.

    Google Scholar 

  7. WANG Z., YANG J. and STERN F. A new volume-of-fluid method with a constructed distance function on general structured grids[J]. Journal of Computaional Physics, 2012, 231(9): 3703–3722.

    Article  MathSciNet  Google Scholar 

  8. WANG Z., YANG J. and STERN F. A simple and conservative operator-splitting semi-Lagrangian volume-of-fluid advection scheme[J]. Journal of Computational Physics, 2012, 231(15): 4981–4992.

    Article  MathSciNet  Google Scholar 

  9. YANG J., BHUSHAN S. and SUH J. et al. Large-eddy simulation of ship flows with wall-layer models on Cartesian grids[C]. Proceedings of 27th Symposium on Naval Hydrodynamics. Seoul, Korea, 2008.

    Google Scholar 

  10. LARSSON L., STERN F. and VISONNEAU M. Numerical ship hydrodynamics: An assessment of the gothenburg 2010 workshop[M]. Gothenburg, Sweden: Springer, 2014, 318.

    Book  Google Scholar 

  11. STERN F., AGDRUP K. and KIM S. Y. et al. Experience from SIMMAN 2008-The first workshop on verification and validation of ship maneuvering simulation methods[J]. Journal of Ship Research, 2011, 55(2): 135–147.

    Google Scholar 

  12. WU P. C., SADAT-HOSSEINI H. and TODA Y. et al. URANS studies of ship-ship interactions in shallow water[C]. Proceedings of 3rd Intl. Conference on Ship Manoeuvring in Shallow and Confined Water. Ghent, Belgium, 2013.

    Google Scholar 

  13. SADAT-HOSSEINI H., CHEN X. and KIM D. H. et al. CFD and system-based prediction of Delft catamaran maneuvering and course stability in calm water[C]. Proceedings of 12th International Conference on Fast Sea Transportation. Amsterdam, The Netherlands, 2013.

    Google Scholar 

  14. ARAKI M., SADAT-HOSSEINI H. and SANADA Y. et al. System identification using CFD captive and free running tests in severe stern waves[C]. Proceedings of 13th International Ship Stability Workshop. Brest, France, 2013.

    Google Scholar 

  15. SANADA Y., TANIMOTO K. and TAKAGI K., et al. Trajectories for ONR Tumblehome maneuvering in calm water and waves[J]. Ocean Engineering, 2013, 72: 45–65.

    Article  Google Scholar 

  16. SANADA, Y., ELSHIEKH, H., TODA Y. et al. Effects of waves on course keeping and maneuvering for surface combatant ONR tumblehome[C]. Proceedings of 30th Symposium on Naval Hydrodynamics. Hobart, Tasmania, Australia, 2014.

    Google Scholar 

  17. SADAT-HOSSEINI H., WU P. C. and CARRICA P. M. et al. CFD simulations of KVLCC2 maneuvering with different propeller modeling[C]. Proceedings of SIMMAN2014 Workshop. Copenhagen, Denmark, 2014.

    Google Scholar 

  18. SADAT-HOSSEINI H., STERN F. System based and CFD simulations of 5415M maneuvering[C]. Proceedings of SImman2014 Workshop. Copenhagen, Denmark, 2014.

    Google Scholar 

  19. SADAT-HOSSEINI H., KIM D. H. and TAYLOR G. L. et al. Vortical structures and instability analysis for Athena in turning maneuver with full-scale valida-tion[C]. Proceedings of 30th Symposium on Naval Hydrodynamics. Hobart, Tasmania, Australia, 2014.

    Google Scholar 

  20. BHUSHAN S., XING T. and STERN F. Vortical structures and instability analysis for Athena wetted transom flow with full-scale validation[J]. Journal of Fluids Engineering, 2012, 134(3): 031201.

    Article  Google Scholar 

  21. STERN F., TOXOPEUS S. Chapter 1–Experimental and computational studies of course keeping in waves for naval surface combatant[R]. Technical Report 161, NATO AVT, 2013.

    Google Scholar 

  22. SADAT-HOSSEINI H., STERN F. and TOXOPEUS S. CFD simulations of course keeping in irregular waves for 5415M[J]. Ocean Engineering, 2014, in Preparation.

    Google Scholar 

  23. SADAT-HOSSEINI H., KIM D. H. and LEE S. K. et al. CFD and EFD study of damaged ship stability in regular waves[J]. Ocean Engineering, 2014, in Preparation.

    Google Scholar 

  24. YOON H., GUI L. and BHUSHAN S. et al. Tomographic PIV measurements for a surface combatant at straight ahead and static drift conditions[C]. Proceedings of 30th Symposium on Naval Hydrodynamics. Hobart, Tasmania, Australia, 2014.

    Google Scholar 

  25. ABDEL-MAKSOUD M., MÜLLER V. and XING T. et al. Chapter 7-Experimental and numerical investigations on flow characteristics of the KVLCC2 at 30° drift angle[R]. Technical Report 183, NATO AVT, 2015.

    Google Scholar 

  26. FALCHI M., FELLI M. and GRIZZI S. et al. SPIV measurements around the Delft 372 catamaran in steady drift[J]. Experiments in Fluids, 2014, 55(11): 1844.

    Article  Google Scholar 

  27. MOUSAVIRAAD S. M., SADAT-HOSSEINI S. H. and CARRICA P. M. et al. URANS studies and validation of ship-ship interactions in calm water and waves for replenishment and overtaking conditions[J]. Journal of Ocean Engineering, 2014, Submitted.

    Google Scholar 

  28. SADAT-HOSSEINI H., WU P. C. and TODA Y. et al. URANS studies of ship-ship interactions in shallow-water[C]. Proceedings of 2nd International Conference on Ship Manoeuvring in Shallow and Confined Water. Trondheim, Norway, 2011.

    Google Scholar 

  29. MOUSAVIRAAD S. M., BHUSHAN S. and STERN F. URANS studies of WAM-V multi-body dynamics in calm water and waves[C]. Proceedings of 3rd International Conference on Ship Maneuvering in Shallow and Confined Water. Ghent, Belgium, 2013.

    Google Scholar 

  30. CONGER M., MOUSAVIRAAD S. M. and STERN F. et al. URANS CFD for two-body hydrodynamic simulation of wave adaptive modular vessels (WAM-V) and validation against sea trials[J]. Naval Engineers Journal, 2014, Accepted for Publication, special edition: the current fleet, the next class and the new prototypes.

    Google Scholar 

  31. MOUSAVIRAAD S. M., WANG Z. and STERN F. URANS studies of hydrodynamic performance and slamming loads on high-speed planing hulls in calm water and waves for deep and shallow conditions[C]. Proceedings of 3rd International Conference on Ship Maneuvering in Shallow and Confined Water. Ghent, Belgium, 2013.

    Google Scholar 

  32. MOUSAVIRAAD S. M., WANG Z. and STERN F. URANS studies of hydrodynamic performance and slamming loads on high-speed planing hulls in calm water and waves for deep and shallow conditions[J]. Applied Ocean Research, 2014, Submitted.

    Google Scholar 

  33. FU T. C., BRUCKER K. A. and MOUSAVIRAAD S. M. et al. A computational fluid dynamics study of the hydrodynamics of high-speed planing craft in calm water and waves[C]. Proceedings of 30th Symposium on Naval Hydrodynamics. Hobart, Tasmania, Australia, 2014.

    Google Scholar 

  34. VOLPI S., SADAT-HOSSEINI H. and KIM D. H. et al. Validation high-fidelity CFD/FE FSI for full-scale highspeed planing hull with composite bottom panels slamming[C]. Proceedings of International Conference on Coupled Problems in Science and Engineering. San Servolo Island, Venice, Italy, 2015.

    Google Scholar 

  35. YEON S., YANG J. and STERN F. Large eddy simulation of drag crisis in turbulent flow past a circular cylinder[C]. Proceedings of ITTC Workshop on Wave Run-Up and Vortex Shedding. Nantes, France, 2013.

    Google Scholar 

  36. YOON S. H., KIM D. H. and SADAT-HOSSEINI H. et al. High-fidelity CFD simulation of wave run-up around vertical cylinders in monochromatic waves[C]. Proceedings of ITTC Workshop on Wave Run-Up and Vortex Shedding. Nantes, France, 2013.

    Google Scholar 

  37. KOO B., YANG J. and YEON S. et al. Reynolds and Froude number effect on the flow past an interface-piercing circular cylinder[J]. International Journal of Naval Architecture and Ocean Engineering, 2014, 6(3): 529–561.

    Article  Google Scholar 

  38. YANG J., STERN F. A simple and efficient direct forcing immersed boundary framework for fluid structure interactions[J]. Journal of Computational Physics, 2012, 231(15): 5029–5061.

    Article  MathSciNet  Google Scholar 

  39. YANG J., STERN F. Robust and efficient setup procedure for complex triangulations in immersed boundary simulations[J]. Journal of Fluids Engineering, 2013, 135(10): 101107.

    Article  Google Scholar 

  40. YANG J., STERN F. A sharp interface direct forcing immersed boundary approach for fully resolved simulations of particulate flows[J]. Journal of Fluids Engineering, 2014, 136(4): 040904.

    Article  Google Scholar 

  41. YANG J., PREIDIKMAN S. and BALARAS E. A strongly coupled, embedded-boundary method for fluid structure interactions of elastically mounted rigid bodies[J]. Journal of Fluids and Structures, 2008, 24(2): 167–182.

    Article  Google Scholar 

  42. WANG Z., YANG J. and STERN F. High-fidelity simulations of bubble, droplet, and spray formation in breaking waves[R]. HPC Insights, 2012, Fall Issue: 5–7.

    Google Scholar 

  43. WANG Z., YANG J. and STERN F. High-fidelity simulations of bubble, droplet, and spray formation in breaking waves[C]. Proceedings of 30th Symposium on Naval Hydrodynamics. Hobart, Tasmania, Australia, 2014.

    MATH  Google Scholar 

  44. GUI L., YOON H. and STERN F. Experimental and theoretical investigation of instabilities for flow over a bump in a shallow water flume with steady downstream wave train[R]. Technical Report 487, IIHR, University of Iowa, 2014.

    Google Scholar 

  45. GUI L., YOON H. and STERN F. Techniques for measuring bulge-scar pattern of free surface deformation and related velocity distribution in shallow water flow over a bump[J]. Experiments in Fluids, 2014, 55(4): 1721.

    Article  Google Scholar 

  46. MICHAEL T., YANG J. and STERN F. Modeling cavitation with a sharp interface[C]. Proceedings of 30th Symposium on Naval Hydrodynamics. Hobart, Tasmania, Australia, 2014.

    Google Scholar 

  47. COLEMAN, H. W., STERN F. Uncertainties and CFD code validation[J]. Journal of Fluids Engineering, 1997, 119(4): 795–803.

    Article  Google Scholar 

  48. STERN F., WILSON R. and SHAO J. Quantitative V&V of CFD simulations and certification of CFD codes[J]. International Journal for Numerical Methods in Fluids, 2006, 50(11): 1335–1355.

    Article  Google Scholar 

  49. XING T., STERN F. Factors of safety for Richardson extrapolation[J]. Journal of Fluids Enginerring, 2010, 132(6): 061403.

    Article  Google Scholar 

  50. STERN F. Quantitative V&V of CFD solutions and certification of CFD codes with examples for ship hydro-dynamics[C]. Proceedings of Symposium on Computational Uncertainty, AVT-147. Athens, Greece, 2007.

    Google Scholar 

  51. MOUSAVIRAAD S. M., HE W. and DIEZ M. et al. Framework for convergence and validation of stochastic uncertainty quantification and relationship to deterministic verification and validation[C]. International Journal for Uncertainty Quantification, 2013, 3(5): 371–395.

    Article  MathSciNet  Google Scholar 

  52. DIEZ M., CHEN X. and CAMPANA E. F. et al. Reliability-based robust design optimization for ships in real ocean environment[C]. Proceedings of 12th International Conference on Fast Sea Transportation, Fast2013. Amsterdam, The Netherlands, 2013.

    Google Scholar 

  53. VOLPI S., DIEZ M. and GAUL N. J. et al. Development and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty qua-ntification[J]. Structural Multidisciplinary Optimization, 2014, Doi 10.1007/s00158-014-1128-5, in Press.

    Google Scholar 

  54. DIEZ M., HE W. and CAMPANA E. F. et al. Uncertainty quantification of Delft catamaran resistance, sinkage and trim for variable Froude number and geometry using metamodels, quadrature and Karhunen-Loève expansion[J]. Journal of Marine Science and Technology, 2014, 19(2): 143–169.

    Article  Google Scholar 

  55. HE W., DIEZ M. and ZOU Z. et al. URANS study of Delft catamaran total/added resistance, motions and slamming loads in head sea including irregular wave and uncertainty quantification for variable regular wave and geometry[J]. Ocean Engineering, 2013, 74: 189–217.

    Article  Google Scholar 

  56. HE Wei, DIEZ Matteo and CAMPANA Emilio Fortunato et al. A polynomial chaos method in CFD-based uncertainty quantification study for ship hydrody-namic performance[J]. Journal of Hydrodynamics, 2013, 25(5): 189–217.

    Article  Google Scholar 

  57. TAHARA Y., DIEZ M. and VOLPI S. et al. CFD-based multi-objective stochastic optimization of a water-jet propelled high speed ship[C]. Proceedings of 30th Symposium on Naval Hydrodynamics. Hobart, Tasmania, Australia, 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick Stern.

Additional information

Biography: STERN Frederick (1949-), Male, Ph. D., Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stern, F., Wang, Z., Yang, J. et al. Recent progress in CFD for naval architecture and ocean engineering. J Hydrodyn 27, 1–23 (2015). https://doi.org/10.1016/S1001-6058(15)60452-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(15)60452-8

Key words

Navigation