Skip to main content
Log in

Energy absorption of spider orb webs during prey capture: A mechanical analysis

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

When the spider orb web stops a prey, the web dissipates impact energy by three routes: internal dissipation within the radial silk, internal dissipation within the spiral silk and aerodynamic dissipation. This paper investigates the energy dissipation mechanism of spider orb webs from the mechanics point of view. Firstly, the dynamic response and energy dissipation of a single spider silk under transverse impact are studied analytically and numerically. The congruence of dynamic response curve validates the accuracy of finite element analysis. Then the whole web is modeled using the finite element method and the respective contribution of each route to total energy dissipation during the simulated prey impact is obtained, which agrees with published experimental results. Finally, the influence of initial impact kinetic energy on the fraction distribution of three routes is demonstrated based on the finite element model. The mechanical mechanism of energy dissipation of spider orb webs is discussed and the reason for the differences among the existing opinions is speculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wise D H. Spiders in Ecological Webs, Cambridge Univer sity Press, New York, 1993.

    Book  Google Scholar 

  2. Foelix R F. Biology of Spiders, 2nd ed, Oxford University Press, New York, 1996.

    Google Scholar 

  3. Gosline J, Lillie M, Carrington E, Guerette P, Ortlepp C, Savage K. Elastic proteins: Biological roles and mechanical properties. Philosophical Transactions of the Royal Society B, 2002, 357, 121–132.

    Article  Google Scholar 

  4. Omenetto F G, Kaplan D L. New opportunities for an ancient material. Science, 2010, 329, 528–531.

    Article  Google Scholar 

  5. Vollrath F, Porter D. Silks as ancient models for modern polymers. Polymer, 2009, 50, 5623–5632.

    Article  Google Scholar 

  6. Gosline J M, Guerette P A, Ortlepp C S, Savage K N. The mechanical design of spider silk: From fibroin sequence to mechanical function. Journal of Experimental Biology, 1999, 202, 3295–3303.

    Google Scholar 

  7. Sensenig A, Agnarsson I, Blackledge T A. Behavioural and biomaterial coevolution in spider orb webs. Journal of Evolutionary Biology, 2010, 23, 1839–1856.

    Article  Google Scholar 

  8. Tarakanova A, Buehler M J. The role of capture spiral silk properties in the diversification of orb webs. Journal of the Royal Society Interface, 2012, 9, 3240–3248.

    Article  Google Scholar 

  9. Vollrath F. Silk evolution untangled. Nature, 2010, 466, 319.

    Article  Google Scholar 

  10. Hesselberg T, Vollrath F. The mechanical properties of the non-sticky spiral in Nephila orb webs (Araneae, Nephilidae). Journal of Experimental Biology, 2012, 215, 3362–3369.

    Article  Google Scholar 

  11. Blackledge T A, Hayashi C Y. Silken toolkits: Biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). Journal of Experimental Biology, 2006, 209, 2452–2461.

    Article  Google Scholar 

  12. Blackledge T A, Swindeman J E, Hayashi C Y. Quasistatic and continuous dynamic characterization of the mechanical properties of silk from the cobweb of the black widow spider Latrodectus hesperus. Journal of Experimental Biology, 2005, 208, 1937–1949.

    Article  Google Scholar 

  13. Keten S, Buehler M J. Atomistic model of the spider silk nanostructure. Applied Physics Letters, 2010, 96, 153701.

  14. Bratzel G, Buehler M J. Molecular mechanics of silk nanostructures under varied mechanical loading. Biopolymers, 2011, 97, 408–417.

    Article  Google Scholar 

  15. Keten S, Buehler M J. Nanostructure and molecular mechanics of spider dragline silk protein assemblies. Journal of the Royal Society Interface, 2010, 7, 1709–1721.

    Article  Google Scholar 

  16. Heim M, Keerl D, Scheibel T. Spider silk: From soluble protein to extraordinary fiber. Angewandte Chemie International Edition, 2009, 48, 3584–3596.

    Article  Google Scholar 

  17. Lewis R V. Spider silk: Ancient ideas for new biomaterials. Chemical Reviews, 2006, 106, 3762–3774.

    Article  Google Scholar 

  18. Harmer A M T, Blackledge T A, Madin J S, Herberstein M E. High-performance spider webs: Integrating biomechanics, ecology and behavior. Journal of the Royal Society Interface, 2011, 8, 457–471.

    Article  Google Scholar 

  19. Alexander R M. Tendon elasticity and muscle function. Comparative Biochemistry and Physiology Part A, 2002, 133, 1001–1011.

    Article  Google Scholar 

  20. Roberts T J, Azizi E. Flexible mechanisms: The diverse roles of biological springs in vertebrate movement. Journal of Experimental Biology, 2011, 214, 353–361.

    Article  Google Scholar 

  21. Elices M. Structural Biological Materials: Design and Structure-Property Relationships, Pergamon, Oxford, 2000.

    Google Scholar 

  22. Lin L H, Edmonds D T, Vollrath F. Structural engineering of an orb-spider’s web. Nature, 1995, 373, 146–148.

    Article  Google Scholar 

  23. Alam M S, Jenkins C H. Damage Tolerance in Naturally Compliant Structures. International Journal of Damage Mechanics, 2005, 14, 365–384.

    Article  Google Scholar 

  24. Alam M S, Wahab M A, Jenkins C H. Mechanics in naturally compliant structures. Mechanics of Materials, 2007, 39, 145–160.

    Article  Google Scholar 

  25. Ko F K, Jovicic J. Modeling of mechanical properties and structural design of spider web. Biomacromolecules, 2004, 5, 780–785.

    Article  Google Scholar 

  26. Aoyanagi Y, Okumura K. Simple model for the mechanics of spider webs. Physical Review Letters, 2010, 104, 038102.

  27. Sensenig A T, Lorentz K A, Kelly S P, Blackledge T A. Spider orb webs rely on radial threads to absorb prey kinetic energy. Journal of the Royal Society Interface, 2012, 9, 1880–1891.

    Article  Google Scholar 

  28. Kohler T, Vollrath F. Thread biomechanics in the two orb-weaving spiders Araneus diadematus (Araneae, Araneidae) and Uloborus walckenaerius (Araneae, Uloboridae). Journal of Experimental Zoology, 1995, 271, 1–17.

    Article  Google Scholar 

  29. Agnarsson I, Kuntner M, Blackledge T A. Bioprospecting finds the toughest biological material: Extraordinary silk from a giant riverine orb spider. PloS One, 2010, 5, e11234.

  30. Liu Y, Sponner A, Porter D, Vollrath F. Proline and processing of spider silks. Biomacromolecules, 2008, 9, 116–121.

    Article  Google Scholar 

  31. Liu Y, Shao Z, Vollrath F. Elasticity of spider silks. Biomacromolecules, 2008, 9, 1782–1786.

    Article  Google Scholar 

  32. Denny M. The physical properties of spider’s silk and their role in the design of orb-webs. Journal of Experimental Biology, 1976, 65, 483–506.

    Google Scholar 

  33. Vehoff T, Glisovic A, Schollmeyer H, Zippelius A, Salditt T. Mechanical properties of spider dragline silk: Humidity, hysteresis and relaxation. Biophysical Journal, 2007, 93, 4425–4432.

    Article  Google Scholar 

  34. Swanson B O, Blackledge T A, Summers A P, Hayashi C Y. Spider dragline silk: Correlated and mosaic evolution in high-performance biological materials. Evolution, 2006, 60, 2539–2551.

    Article  Google Scholar 

  35. Swanson B O, Anderson S P, DiGiovine C, Ross R N, Dorsey J P. The evolution of complex biomaterial performance: The case of spider silk. Integrative Comparative Biology, 2009, 49, 21–31.

    Article  Google Scholar 

  36. Swanson B O, Blackledge T A, Hayashi C Y. Spider capture silk: Performance implications of variation in an exceptional biomaterial. Journal of Experimental Zoology, 2007, 307A, 654–666.

    Article  Google Scholar 

  37. Swanson B O, Blackledge T A, Beltran J, Hayashi C Y. Variation in the material properties of spider dragline silk across species. Applied Physics A, 2006, 82, 213–218.

    Article  Google Scholar 

  38. Kelly S P, Sensenig A, Lorentz K A, Blackledge T A. Damping capacity is evolutionarily conserved in the radial silk of orb-weaving spiders. Zoology, 2011, 114, 233–238.

    Article  Google Scholar 

  39. Lin L H, Sobek I W. Structural hierarchy in spider webs and spiderwebs-type systems. Structural Engineering, 1998, 76, 59–64.

    Google Scholar 

  40. Yang Y, Chen X, Shao Z, Zhou P, Porter D, Knight D P, Vollrath F. Toughness of spider silk at high and low temperature. Advanced Materials, 2005, 17, 84–88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxin Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Yang, J. & Sun, Y. Energy absorption of spider orb webs during prey capture: A mechanical analysis. J Bionic Eng 12, 453–463 (2015). https://doi.org/10.1016/S1672-6529(14)60136-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(14)60136-0

Keywords

Navigation