Technical section
Automated sleep scoring: a comparative reliability study of two algorithmsAnalyse automatique du sommeil: fiabilité comparée de deux algorithmes

https://doi.org/10.1016/0013-4694(87)90214-8Get rights and content

Abstract

In the present study, deterministic and stochastic sleep staging (DSS and SSS) methods were compared with expert visual analysis in order to provide reliability estimates under strict conditions of comparison. Thirty polygraphic records (15 controls, 15 patients) have been investigated, including artefacts and doubtful periods. Average agreement rates of both methods compared to expert visual scoring were very similar, although a few specifics occasionally appeared for partial sleep stages. The comparison of more than 40,000 sleep decisions (on 20 sec epochs) yielded 75% absolute reliability for normal controls and 70% for pathological cases. However, if the agreement rate obtained for routine visual scoring (82%) in our sleep laboratory is considered as satisfactory, our system is then 90% satisfactory. Finally, complementary aspects outlined in the two automatic scoring systems suggested the development of a unique algorithm on the basis of these methods. Keeping in mind the size of the test sample and the strict procedure of comparison, the two automated staging systems described in this study can be used with reasonable confidence for large scale investigations of sleep in man.

Résumé

Dans cet article, nous avons comparé une méthode déterministre et une méthode stochastique d'analyse du sommeil à l'interprétation visuelle d'un expert de référence. Le but de l'expérience consistait à estimer les taux d'accord des deux méthodes en respectant des conditions de comparaison définies de manière stricte. L'effectif de base comprenait 30 enregistrements polygraphiques (15 contrôles et 15 patients) traités globalement, y compris les périodes de moindre qualité d'enregistrement et même les artéfacts. Les taux moyens d'accord obtenus par rapport à un expert de référence étaient semblables pour les deux méthodes, bien que des spécificités apparussent au niveau de la reconnaissance de certains stades. La comparaison de plus de 40.000 décisions de stades sur des périodes de 20 sec a conduit à un taux de fiabilité globale absolue de 75% chez les sujets normaux et 70% pour les patients, en considérant une analyse visuelle soignée. Néanmoins, en se référant au taux d'accord de l'analyse visuelle effectuée en routine dans notre laboratoire (82%), notre système était considéré comme satisfaisant à 90%. Enfin, la mise en évidence d'aspects complémentaires des deux méthodes d'analyse automatique nous a permis d'envisager de développer un nouvel algorithme plus fiable sur base de ces deux méthodes. Etant donné la taille de l'échantillon sur lequel nous avons testé les deux systèmes, et la stricte méthodologie de comparaison, nous pouvons raisonnablement estimer que ces méthodes d'analyse automatique peuvent être exploitées dans le cadre d'investigations à grande échelle sur le sommeil chez l'homme.

References (21)

There are more references available in the full text version of this article.

Cited by (55)

  • A study on sleep stage classification based on a single-channel EEG signal

    2021, Electronic Devices, Circuits, and Systems for Biomedical Applications: Challenges and Intelligent Approach
  • A novel, fast and efficient single-sensor automatic sleep-stage classification based on complementary cross-frequency coupling estimates

    2018, Clinical Neurophysiology
    Citation Excerpt :

    Sleep stage scoring is the gold standard for the analysis of human sleep (Agarwal and Gotman, 2001). While many sleep laboratories use the traditional manual sleep stage scoring of neurophysiological recordings to produce the hypnogram, recent years have witnessed a burst of proposed methods for automatic or semi-automatic sleep staging (e.g., Agarwal and Gotman, 2001, 2002; Becq et al., 2005; Berthomier et al., 2007; Ma et al., 2011; Itil et al., 1969; Koley and Dey, 2012; Krakovská and Mezeiová, 2011; Larsen and Walter, 1970; Schaltenbrand et al., 1996; Sheng-Fu et al., 2012; Pan et al., 2012; Stanus et al., 1987; Gudmundsson et al., 2005; Šušmáková and Krakovská, 2008; Huang et al., 2002). The different methods for ASSC generally extract features from the signals to analyse each temporal segment (epoch) and use classification algorithms to detect/predict the sleep stages (Güneş et al., 2010; Zoubek et al., 2007; Sousa et al., 2015).

  • Automatic detection of periods of slow wave sleep based on intracranial depth electrode recordings

    2017, Journal of Neuroscience Methods
    Citation Excerpt :

    Notably, SWS is not unique to humans: it has been reported in mammals (Vorster and Born, 2015), birds (Libourel and Herrel, 2015), and reptiles (Shein-Idelson et al., 2016). Automated methods to exclusively identify SWS have been few (Benington et al., 1994; Shein-Idelson et al., 2016; Stanus et al., 1987), and the inter-observer agreement can be as low as 67.2% (Nizam et al., 2013). Here, we present a new method for the automated detection of points of time during which a person is in SWS from intracranial depth electrode recordings alone.

  • A hierarchical classification method for automatic sleep scoring using multiscale entropy features and proportion information of sleep architecture

    2017, Biocybernetics and Biomedical Engineering
    Citation Excerpt :

    NREM is further divided into four stages: S1, S2, S3 and S4. Sometimes S3 and S4 are merged into a single stage, known as slow wave sleep (SWS) [3,4]. In sleep medicine, sleep staging is mainly conducted by highly trained experts.

  • Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines

    2015, Journal of Neuroscience Methods
    Citation Excerpt :

    Both manuals propose to use EEG derivations (2 in the R&K manual, and 3 in the AASM one), 2 EOG electrodes and one EMG electrode. While visual scoring remains the gold-standard, recent years have witnessed a surge in method developments for automatic or semi-automatic sleep staging (e.g. Agarwal and Gotman, 2001, 2002; Becq et al., 2005; Berthomier et al., 2007; Ma et al., 2011; Itil et al., 1969; Koley and Dey, 2012; Krakovska and Kristina, 2011; Larsen and Walter, 1970; Schaltenbrand et al., 1996; Sheng-Fu et al., 2012; Shing-Tai et al., 2012; Stanus et al., 1987; Steinn et al., 2005; Huang et al., 2014). Although these results obtained so far are promising, there is still room and a need for improvement, especially given the time-consuming and tedious nature of visual sleep scoring.

  • Automatic sleep stage recurrent neural classifier using energy features of EEG signals

    2013, Neurocomputing
    Citation Excerpt :

    Based on the R&K classification rules, sleep recordings of adults can be divided into the following six sleep stages: wakefulness (WA), non-rapid eye-movement sleep stage 1 (NREM 1), NREM sleep stage 2 (NREM 2), NREM sleep stage 3 (NREM 3), NREM sleep stage 4 (NREM 4), and rapid eye-movement (REM). Sometimes, NREM 3 and NREM 4 are pooled into a single stage, slow wave sleep (SWS) [5,24]. In the area of sleep medicine, sleep hypnograms obtained by visually scoring the recordings from PSG are always used to present the recordings of the brain wave activity from EEG signals during a period of sleep [5,29].

View all citing articles on Scopus

This work was supported by the following institutions: Les Ministères de la Région Bruxelloise et de la Communauté Française, l'Association Belge pour l'Etude de la Santé Mentale, le Service d'Electronique et Techniques Numériques de la FPMs, le Service d'Automatique de l'ULB, le Fond National de la Recherche Scientifique, la CGER et la Loterie Nationale.

We are grateful to S. Lejeune, P. Linkowski, G. Hoffman, Drs. Owen, B. Jacques and H. Haverals for their collaboration and advice.

View full text