Growth of alloy substrates by liquid phase electroepitaxy; Theoretical considerations

https://doi.org/10.1016/0022-0248(93)90477-EGet rights and content

Abstract

The liquid phase electroepitaxial (LPEE) growth of large diameter, compositionally uniform and low dislocation density ingots of alloy semiconductors, suitable as substrates for device fabrication, is considered. In this regard, the main scientific tasks; (i) generation, propagation and multiplication of dislocations in bulk alloy semiconductors due to composition variations and alloy/substrate lattice mismatch and (ii) the effect of convection in the melt on the growth interface stability and structural perfection of bulk alloy semiconductors, are discussed in detail. Finally, the most efficient means of achieving (i) low dislocation density alloys by employing lateral LPEE overgrowth on partially masked binary substrates, and (ii) large diameter alloys by employing LPEE growth in a static magnetic field of reasonable strength, are identified.

References (91)

  • N. Shibata et al.

    J. Crystal Growth

    (1988)
  • T. Kusunoki et al.

    J. Crystal Growth

    (1991)
  • K. Nakajima et al.

    J. Crystal Growth

    (1991)
  • T. Kusunoki et al.

    J. Crystal Growth

    (1991)
  • A.P. Roth et al.

    J. Crystal Growth

    (1991)
  • T. Ozawa et al.

    J. Crystal Growth

    (1991)
  • T. Ozawa et al.

    J. Crystal Growth

    (1991)
  • A.G. Thompson et al.

    J. Phys. Chem. Solids

    (1971)
  • A.J. Marshall et al.

    J. Crystal Growth

    (1977)
  • S. Sen et al.

    J. Crystal Growth

    (1978)
  • R.A. Lefever et al.

    Mater. Res. Bull.

    (1978)
  • K.J. Bachmann et al.

    J. Crystal Growth

    (1978)
  • J.P. Garandet et al.

    J. Crystal Growth

    (1990)
  • D.H. Kim et al.

    J. Crystal Growth

    (1989)
  • H.E. Sell et al.

    J. Crystal Growth

    (1989)
  • J. Nishizawa et al.

    J. Crystal Growth

    (1986)
  • G. Bischopink et al.

    J. Crystal Growth

    (1991)
  • P. Gille et al.

    J. Crystal Growth

    (1991)
  • T. Bryskiewicz et al.

    J. Crystal Growth

    (1987)
  • T. Bryskiewicz et al.

    J. Crystal Growth

    (1987)
  • T. Bryskiewicz

    Progr. Crystal Growth Characterization

    (1986)
  • G.R. Booker et al.

    J. Crystal Growth

    (1978)
  • S. Motakef et al.

    J. Crystal Growth

    (1991)
  • A.S. Jordan

    J. Crystal Growth

    (1980)
  • A.S. Jordan

    J. Crystal Growth

    (1985)
  • E.D. Bourret et al.

    J. Crystal Growth

    (1987)
  • G. Muller et al.

    J. Crystal Growth

    (1985)
  • H.V. Winston et al.
  • R. Bergmann

    J. Crystal Growth

    (1991)
  • S. Zhang et al.

    J. Crystal Growth

    (1990)
  • P.O. Hansson et al.

    J. Crystal Growth

    (1991)
  • Z.R. Zytkiewicz

    J. Crystal Growth

    (1983)
  • S.I. Long et al.

    J. Crystal Growth

    (1974)
  • R. Rupp et al.

    J. Crystal Growth

    (1991)
  • S. Motakef

    J. Crystal Growth

    (1990)
  • M.J. Stewart et al.

    J. Crystal Growth

    (1972)
    M.J. Stewart et al.

    J. Crystal Growth

    (1972)
  • A. Hirata et al.

    Proc. CSME Mechanical Engineering Forum 1990, Toronto

    (June 1990)
  • W.A. Bonner et al.
  • W.A. Bonner et al.

    Proc. 6th Conf. on Semi-Insulating III-V Materials

  • X.J. Bao et al.

    J. Electron. Mater.

    (1991)
  • K. Nakajima et al.
  • T. Hibiya et al.

    J. Electrochem. Soc.

    (1987)
  • K. Nakajima

    J. Appl. Phys.

    (1987)
  • T. Bryskiewicz et al.
  • T. Bryskiewicz et al.

    J. Appl. Phys.

    (1990)
  • Cited by (40)

    • Liquid-Phase Epitaxy

      2015, Handbook of Crystal Growth: Thin Films and Epitaxy: Second Edition
    View all citing articles on Scopus
    View full text