Review paper
Border traps: Issues for MOS radiation response and long-term reliability

https://doi.org/10.1016/0026-2714(95)93068-LGet rights and content

Abstract

We have performed an extensive study of the effects of border traps (near-interfacial oxide traps that can communicate with the underlying Si over a wide range of time scales) on the response of metal-oxide-semiconductor (MOS) devices to ionizing radiation. Estimates of border-trap densities for several types of MOS devices are obtained by capacitance-voltage (CV) hysteresis, 1f noise, and combined CV/thermally-stimulated-current methods. A new “dual-transistor border-trap” (DTBT) technique is described in detail which combines conventional threshold-voltage and 1-MHz charge-pumping measurements on n- and p- channel MOS transistors to estimate radiation-induced oxide-, interface-, and border-trap charge densities. Estimates of border-trap charge densities obtained via the DTBT technique agree well with trap densities inferred from other techniques. In some devices, border-trap charge densities (which can be greater than 1012 cm−2 following ionizing radiation exposure) can approach or exceed interface-trap charge densities, emphasizing the need to distinguish border-trap effects from interface-trap effects in models of MOS radiation response and long-term reliability. This appears to be especially critical for MOS devices with ultrathin (less than ∼6 nm) oxides, in which border traps and interface traps likely will be the dominant defect types. Effects of border traps on MOS scattering rates, cryogenic applications, and long-term reliability assessment are also discussed.

References (79)

  • D. Zupac et al.

    Appl. Phys. Lett.

    (1992)
  • D. Zupac et al.

    J. Appl. Phys.

    (1993)
  • D. Zupac et al.

    IEEE Trans. Nucl. Sci.

    (1993)
  • B.E. Deal

    IEEE Trans. Electron Dev.

    (1980)
  • E.H. Nicollian et al.

    MOS (Metal Oxide Semiconductor) Physics and Technology

  • T.P. Ma et al.

    Ionizing Radiation Effects in MOS Devices & Circuits

  • D.M. Fleetwood

    IEEE Trans. Nucl. Sci.

    (1992)
  • D.M. Fleetwood et al.

    J. Appl. Phys.

    (1993)
  • C.T. Sah et al.

    Phys. Rev. Lett.

    (1966)
  • E.H. Nicollian et al.

    Bell System Tech. J.

    (1967)
  • M.J. Uren et al.

    Appl. Phys. Lett.

    (1989)
  • M. Kerber

    J. Appl. Phys.

    (1993)
  • W. L. Warren, D. M. Fleetwood, M. R. Shaneyfelt, J. R. Schwank, P. S. Winokur, and R. A. B. Devine, Appl. Phys. Lett.,...
  • S.K. Lai et al.

    J. Appl. Phys.

    (1981)
    S.K. Lai

    J. Appl. Phys.

    (1983)
  • M.V. Fischetti

    J. Appl. Phys.

    (1985)
  • L.P. Trombetta et al.

    J. Appl. Phys.

    (1988)
    L.P. Trombetta et al.

    J. Appl. Phys.

    (1991)
  • D.A. Buchanan et al.

    J. Appl. Phys.

    (1990)
  • R.K. Freitag et al.

    IEEE Trans. Nucl. Sci.

    (1993)
  • J.R. Schwank et al.

    IEEE Trans. Nucl. Sci.

    (1984)
  • C.M. Dozier et al.

    IEEE Trans. Nucl. Sci.

    (1985)
  • A.J. Lelis et al.

    IEEE Trans. Nucl. Sci.

    (1988)
    A.J. Lelis et al.

    IEEE Trans. Nucl. Sci.

    (1989)
  • T.R. Oldham et al.

    Semicon. Sci. & Technol.

    (1989)
  • R.E. Stahlbush et al.

    IEEE Trans. Nucl. Sci.

    (1990)
  • D.M. Fleetwood et al.

    Appl. Phys. Lett.

    (1992)
  • D.M. Fleetwood et al.

    IEEE Trans. Nucl. Sci.

    (1992)
  • D.M. Fleetwood et al.

    IEEE Trans. Nucl. Sci.

    (1993)
  • G. Reimbold

    IEEE Trans. Electron Dev.

    (1984)
  • M.J. Kirton et al.

    Adv. Phys.

    (1989)
  • J.J. Simonne et al.
  • D.M. Fleetwood et al.

    Phys. Rev. Lett.

    (1990)
  • J.H. Scofield et al.

    IEEE Trans. Nucl. Sci.

    (1991)
  • B. Henderson

    Appl. Phys. Lett.

    (1984)
  • M.A. Jupina et al.

    IEEE Trans. Nucl. Sci.

    (1989)
  • M.A. Jupina
  • E.H. Nicollian et al.

    J. Appl. Phys.

    (1971)
  • Y. Nissan-Cohen et al.

    J. Appl. Phys.

    (1985)
  • D.J. DiMaria

    J. Appl. Phys.

    (1990)
  • D.M. Fleetwood et al.

    Appl. Phys. Lett.

    (1994)
  • J.R. Blakemore

    Solid State Physics

  • Cited by (163)

    View all citing articles on Scopus
    View full text