Elsevier

Solar Energy

Volume 19, Issue 2, 1977, Pages 139-147
Solar Energy

Article
Solar-heated-air receivers,☆☆

https://doi.org/10.1016/0038-092X(77)90051-2Get rights and content

Abstract

Receiver design alternatives for a central tower, heat-air receiver of a solar/gas turbine electrical generation plant are considered. Apertured and unapertured, domed-surface and -cavity receivers are examined and losses such as incident flux reflection and reradiation from the receiver are included. The receiver, constructed of ceramic domes that are individually cooled by impingement-jet heat-transfer techniques, is designed to supply heated air at 1800°F and operate in a pressurized condition at a pressure ratio of four. It is shown that high thermal conversion efficiencies (80–90%) may be achieved with cavity receivers where the interior cavity surfaces are formed from single or multiple domes. The efficiencies of surface receiver elements are found to be substantially less than those of cavities, from 54 to 70 per cent. The difference lies in the higher reradiation flux losses of surface receivers.

Resumen

Son consideradas alternativas de diseño de receptores para una torre central de calentamiento de aire de una planta solar de generación eléctrica con turbina de gas. Son examinadas superficies y cavidades de cúpulas receptores, diafragmadas o no, y se incluyen las pérdidas tales como la reflexión del flujo incidente y la rerradiación desde el receptor. Se diseñó el receptor, construido de cúpulas cerámicas refrigeradas individualmente por técnicas de transferencia de calor por choque de chorres, para proveer aire calentado a 1.800°F y operar en condiciones de presurización de cuatro veces. Se muestra que pueden ser obtenidos rendimientos altos (80 a 90%) con receptores de cavidad en los que las mismas están formadas por una o varias cúpulas. Se encontró que los receptores de superficie tienen rendimientos substancialmente menores que los de cavidad, de 54 a 70%. La diferencia se debe a la gran rerradiación de los receptores de superficie.

Résumé

On considère différentes études de récepteur pour une tour centrale, un récepteur à air chaud pour une centrale électrique solaire avec turbine à gaz. On examine des récepteurs ouverts ou non, à surface en forme de dôme et en forme de cavité, et on inclue des pertes telles que la réflexion du flux incident et la réémission du récepteur. Le récepteur, construit à partir de dômes de céramique qui sont refroidis individuellement par des techniques de transfert de chaleur avec collision d'un jet, est conçu pour fournir de l'air à 1800°F et fonctionner dans des conditions de pressurisation telles qu'on ait un rapport de pression de 4. On montre que des rendements élevés de conversion thermique (80–90%) peuvent être atteints avec des récepteurs en forme de cavité dans lesquels les surfaces intérieures de la cavité sont formées d'un ou plusieurs dômes. On a trouvé que les rendements de éléments de la surface réceptrice sont substantiellement moindres que ceux des cavités, de 54 à 70%. La différence réside dans les pertes plus fortes de flux réémis par les récepteurs de la surface.

References (9)

  • P.O. Jarvinen

    Solar-heated-air turbine generating systems

  • M.A. Krenzke et al.

    The elastic buckling strength of spherical glass shells

  • H.H. Sawat

    Absorption of thermal radiation in a hemispherical cavity

    Heat Transfer

    (1970)
There are more references available in the full text version of this article.

Cited by (6)

  • Conjugate heat transfer analysis of an impinging receiver design for a dish-Brayton system

    2015, Solar Energy
    Citation Excerpt :

    However, due to the low cooling efficiency of the traditional forced convection on the cooling side, the published data show that the cavity receivers still work with relatively high temperature peaks on the absorber surfaces as well as high temperature differences between the absorber surfaces and the working fluid (Hischier et al., 2012a; Strumpf et al., 1982). In order to reduce the impacts of the flux peak to the uniformity of the temperature distribution on the cylindrical cavity surface in traditional cavity receiver designs (Hischier et al., 2012a; Strumpf et al., 1982), impinging cooling technology was introduced in the authors’ previous work together with an inverse design method (IDM) (Wang et al., 2014), after almost 40 years since it was first introduced in solar air receiver design in 1970s by Jarvinen (1977). This IDM design method, which based on a combination of a ray-tracing model and a heat transfer analytical model, is developed for quickly finding possible cavity receiver design with relative uniform surface temperature.

  • An inverse design method for a cavity receiver used in solar dish Brayton system

    2014, Solar Energy
    Citation Excerpt :

    Moreover, multiple jets’ may be applied if a large cooling or heating area needs to be covered. Impinging heat transfer was introduced in solar air receiver design in 1970s by Jarvinen (1977), however, there seems to be only few new contributions in the following almost 40 years. In this paper, impinging technology again is introduced to a solar cavity air receiver conceptual design.

  • Heat transfer-A review of 1977 literature

    1978, International Journal of Heat and Mass Transfer

Presented at the I.S.E.S. International Solar Energy Congress and Exposition, Los Angeles, California (28 July–1 Aug. 1975).

☆☆

This work was sponsored by the Department of the Air Force and the MIT Energy Laboratory.

View full text