Elsevier

Carbohydrate Polymers

Volume 29, Issue 3, March 1996, Pages 225-232
Carbohydrate Polymers

Changes in the mechanical properties of thermoplastic potato starch in relation with changes in B-type crystallinity

https://doi.org/10.1016/0144-8617(96)00011-2Get rights and content

Abstract

The influence of crystallization on the stress-strain behaviour of thermoplastic potato starch has been monitored. Potato starch has been processed by extrusion with glycerol and water added as plasticizers. The thermoplastic starch consists of a molecular network of semicrystalline amylose and amylopectin with some granular fragments. A rapid increase in B-type crystallinity and a change in mechanical properties is observed within 2 weeks at 70 and 90% relative humidities. An increase in B-type crystallinity from 5 to 30% compared to native potato starch leads to an increased elastic modulus (from 10 to 70 MPa) and tensile stress (from 3 to 7 MPa) for thermoplastic starch materials with a water content of circa 15%. The elongation is decreased from 105 to 55%. For materials with more than 30% B-type crystallinity relative to native potato starch, a sharp decrease in elongation is observed and the materials form cracks. The effects are explained by an increase in physical cross-links by amylose and amylopectin intermolecular double helix formation and crystallization resulting in a reinforced network. A further intramolecular crystallization of the amorphous amylopectin reduces the intermolecular interactions of amylopectin and induces internal stress within the network of semicrystalline amylose and amylopectin. The increased internal stress at the highly crystalline amylopectin sites finally leads to cracking of the materials.

References (28)

  • S. Hizukuri

    Carbohydr. Res.

    (1986)
  • M.J. Miles et al.

    Carbohydrate Res.

    (1985)
  • V.J. Morris

    Trends Food Sci. Technol.

    (1990)
  • S.G. Ring et al.

    Carbohydr. Res.

    (1987)
  • P.L. Russell

    J. Cereal Sci.

    (1987)
  • H.G. Bader et al.

    Starch/Staerke

    (1994)
  • C. Bastioli et al.

    Italy PCT Int. Appl.

    (1992)
  • C.G. Biliaderis et al.

    Cereal Chem.

    (1990)
  • R. Chinnaswamy et al.

    Starch/Staerke

    (1991)
  • I.L.H.A. De Brock et al.

    EP Appl.

    (1993)
  • P.A. Dell et al.

    J. Appl. Polym. Sci.

    (1994)
  • P.H. Hermans et al.

    J. Polym. Sci.

    (1949)
  • A.R. Kirby et al.

    J. Materials Sci.

    (1993)
  • L.S. Lai et al.

    Biotechnol. Prog.

    (1991)
  • Cited by (158)

    • Turmeric starch: structure, functionality, and applications

      2023, Non-Conventional Starch Sources: Properties, Functionality, and Applications
    View all citing articles on Scopus
    View full text