Uplift of the western border of the Altiplano on a west-vergent thrust system, Northern Chile

https://doi.org/10.1016/0895-9811(96)00004-1Get rights and content

Abstract

A high angle, west-vergent thrust system (WTS) located along the western border of the Altiplano in Northern Chile caused the westward translation of the metamorphic pre-Cambrian basement and Mesozoic rocks over late Tertiary deposits. This WTS, which was essential to the build-up of the western Altiplano, developed principally between 15 and 4.8 Ma. The chronological sequence of faults indicate a back-thrusting. The WTS forms an overstep thrust sequence with vertical throws increasing from West to East and exposes in this direction increasingly older units over younger ones.

Taking the paleolake deposits of the Chucal Formation (25-19 Ma) and the ignimbrites of Oxaya Formation (19 Ma) as two regional reference levels, it is possible to calculate a 4,000 ± 200 m uplift associated to the WTS and a 392 ± 20 m/Ma uplift rate.

The WTS on the west side of de Altiplano and the east vergent thrust and fold belt on the east border, indicate that this plateau is essentially a compressive asymmetric structure, formed by two thrust “belts” with opposing vergencies.

Resumen

El borde occidental del Altiplano está formado por un sistema fallado y plegado de alto ángulo con vergencia hacia el Oeste (WTS). Este sistema involucra el alzamiento de un basamento metamórfico de edad precámbrica y secuencias sedimentarias del Mesozoico, falladas sobre unidades sedimentarias y volcánicas de edad terciaria media y superior.

El alzamiento principal del Altiplano, en el extremo norte de Chile, se habría desarrollado entre los 15 y 4.8 Ma y habría sido facilitado por este sistema de fallas, cuya edad es menor hacia el antepaís y cuyo desplazamiento vertical aumenta en la misma dirección. Tomando como niveles de referencia regional las ignimbritas de la Formación Oxaya y la paleoelevación a la cual fueron generadas las sedimentitas de la Formación Chucal (lacustre, 25-19 Ma), el alzamiento tectónico asociado al WTS habría sido del orden de los 4.000 ± 200 m con una tasa de 392 ± 20 m/Ma.

La existencia de un sistema fallado de vergencia occidental en el borde oeste del Altiplano indica que esta megaunidad es, esencialmente, una estructura compresiva asimétrica formada por dos sistemas de empuje de vergencias opuestas: el sistema de empuje de las Sierras Subandinas y el WTS, ambos iniciados durante el Oligoceno.

References (40)

  • L. Dorbath et al.

    Seismicity and tectonic deformation in the Eastern Cordillera and the subAndean zone of central Peru

    Journal of South American Earth Sciences

    (1991)
  • C. Froidevaux et al.

    The mechanical state of the lithosphere in the AltiplanoPuna segment of the Andes

    Earth and Planetary Science Letters

    (1984)
  • A. Lahsen

    Upper Cenozoic volcanism and tectonism in the Andes of northern Chile

    Earth Science Reviews

    (1982)
  • R.W. Allmendinger

    Tectonic development, southeaster border of the Puna plateau, north western Argentina Andes

    Geological Society of America Bulletin

    (1986)
  • P. Baby et al.

    Geometry and kinemtic evolution of passive roof duplexes deduced from cross section balancing: Example from the foreland thrust system of the southern Bolivia Subandean Zone

    Tectonics

    (1992)
  • P. Baker et al.

    Upper Cenozoic volcanism in the Central Andes, ages and volume

    Earth and Planetary Science Letters

    (1978)
  • M. Barazangi et al.

    Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America

    Geology

    (1976)
  • M.T. Benjamin et al.

    Recent rapid uplift in the Bolivian Andes: Evidence from Fission-track dating

    Geology

    (1987)
  • T.A. Cahill et al.

    Seismicity and shape of the subducted Nazca Plate

    Journal of Geophisical Research

    (1992)
  • R. Charrier et al.

    JurassicCretaceous paleogeographic evolution of the Chilean Andes at 23 °24 ° S.L. and 34 ° 35° S.L.: A comparative analysis

  • R. Charrier et al.

    Edad y contenido paleofloristico de la Formación Chucal y condiciones paleoclimáticas para el Oligoceno Tardío-Mioceno Inferior en el Altiplano de Arica, Chile

  • R. Charrier et al.

    Geología Y Tectónica Del Altiplano Chileno

  • S.T. Crough

    Apatite fission-track dating of erosion in the eastern Andes, Bolivia

    Earth and Planetary Science Letter

    (1983)
  • C. Galli

    Las formaciones geológicas en el borde occidental de la Puna de Atacama, Sector de Pica, Tarapacá

    Revista Minerales Año

    (1957)
  • C Galli

    Cuadrángulo Juan de Morales, Provincia de Tarapacá

  • C. Galli et al.

    Cuadrángulos Pica, Alca, Matilla y Chacarilla

  • A. Gansser

    Facts and theories on the Andes

    Journal of the Geological Society of London

    (1973)
  • T. Gubbels et al.

    High-level surfaces, plateau uplift, and foreland development, Bolivian central Andes

    Geology

    (1993)
  • S. Harambour

    Geología preCenozoica de la Cordillera de los Andes entre las quebradas Aroma y Juan de Morales, I-Región, Chile

  • G. Herail et al.

    Structure and kinematic evolution of subandean thrust system of Bolivia

  • Cited by (126)

    • Orogenic-orographic feedback and the rise of the Central Andes

      2023, Earth and Planetary Science Letters
      Citation Excerpt :

      These three transects include the three main morphotectonic provinces (WC, AP and EC) (Fig. 5). Three of the paleoclimate and paleoaltimetry proxies (Singewald and Berry, 1922; Muñoz and Charrier, 1996; Graham et al., 2001) may be subject to unconstrained systematic errors due to assumptions about the modern climate elevation relationship (Ehlers and Poulsen, 2009) however the remaining twenty eight studies have either been reinterpreted subsequently to take into account these variation or include them in their initial data. Fig. 5 shows only limited along strike (north-south) variation and the data is summarised in Fig. 6.

    • Inverted structures in the western Central Andes thrust belt front

      2022, Andean Structural Styles: A Seismic Atlas
    View all citing articles on Scopus
    View full text