Proton spin diffusion for spatial heterogeneity and morphology investigations of polymers

https://doi.org/10.1016/0926-2040(94)00036-CGet rights and content

Abstract

The diffusion of Zeeman spin order in the laboratory frame for a system with microscopic spatial heterogeneity, due to either molecular mobility or chemical heterogeneity, has been analysed by solving the diffusion equation in the limit of two different models. By simulation of proton spin diffusion nuclear magnetic resonance (NMR) spectral areas for polyethylene oxide) we have demonstrated, for both models, the sensitivity of these observables to phase domain size and to the dimensionality of the diffusion process. The possibility to obtain information about the morphology is analysed. Results from calculations based on the two models are compared with experimental spin diffusion results from 1H NMR spectra of poly(ethylene oxide). Two methods for filtering the z-magnetization from the different phase domains in a solid are discussed. The efficiency of a magnetization dipolar filter based on magic and polarization echoes is presented.

References (117)

  • E. Meyer

    Prog. Surf. Sci.

    (1992)
  • N. Bloembergen

    Physica (Utrecht)

    (1949)
  • J. Virlet et al.

    Chem. Phys. Lett.

    (1980)
  • P. Caravatti et al.

    J Magn. Reson.

    (1983)
  • C. Connor et al.

    Chem. Phys. Lett.

    (1985)
  • M.G. Colombo et al.

    Chem. Phys. Lett.

    (1988)
  • P. Robyr et al.

    Chem. Phys. Lett.

    (1989)
  • P. Robyr et al.

    Chem. Phys. Lett.

    (1991)
  • W. Kolodziejski et al.

    Chem. Phys. Lett.

    (1992)
  • M. Alla et al.

    Chem. Phys. Lett.

    (1980)
  • W. Schajor et al.

    Chem. Phys. Lett.

    (1980)
  • C. Ye et al.

    J. Magn. Reson.

    (1983)
  • A. Kalk et al.

    J. Magn. Reson.

    (1976)
  • A. Majumdar et al.

    J. Magn. Reson.

    (1990)
  • A. Majumdar

    J. Magn. Reson.

    (1991)
  • J. Fejzo et al.

    J. Magn. Reson.

    (1991)
  • S. Emid et al.

    Physica B

    (1983)
  • A.H. Vuorimäki

    Chem. Phys. Lett.

    (1993)
  • A.H. Vuorimäki

    J. Magn. Reson. A

    (1993)
  • A.M. Kenwright et al.

    J. Magn. Reson.

    (1986)
  • T. Kimura et al.

    Polymer

    (1992)
  • X. Zhang et al.

    Polymer

    (1989)
  • W.Z. Cai et al.

    Polymer

    (1993)
  • J. Hu et al.

    J. Magn. Reson.

    (1992)
  • A. Johansson et al.

    Electrochim. Acta

    (1992)
  • D. VanderHart et al.

    J. Magn. Reson.

    (1981)
  • P. Hirsch et al.
  • B.D. Cullity
  • L.E. Alexander
  • D. Rugar et al.

    Phys. Today

    (1990)
  • H.A. Mizes et al.

    Appl. Phys. Lett.

    (1991)
  • G.F. Meyers et al.

    Langmuir

    (1992)
  • R.R. Ernst et al.
  • M. Goldman et al.

    Phys. Rev.

    (1966)
  • I.J. Lowe et al.

    Phys. Rev.

    (1967)
  • A. Abragam
  • T.T.P. Cheung

    Phys. Rev.

    (1981)
  • R.A. Assink

    Macromolecules

    (1978)
  • C.E. Bronniman et al.

    J. Chem. Phys.

    (1983)
  • P.H. Hendrichs et al.

    J. Magn. Reson.

    (1984)
  • M.H. Frey et al.

    J. Am. Chem. Soc.

    (1984)
  • M. Linder et al.

    J. Chem. Phys.

    (1985)
  • D. Suter et al.

    Phys. Rev.

    (1985)
  • L.B. Moron et al.

    Phys. Rev.

    (1992)
  • R. Eckman et al.

    Chem. Phys. Lett.

    (1983)
  • T.A. Cross et al.

    J. Am. Chem. Soc.

    (1983)
  • V.V. Krishman et al.

    J. Magn. Reson.

    (1989)
  • M. Punkkinen et al.

    Physica B.

    (1990)
  • Cited by (191)

    View all citing articles on Scopus
    View full text