The sintering of two particles by surface and grain boundary diffusion—a two-dimensional numerical study

https://doi.org/10.1016/0956-7151(95)00115-CGet rights and content

Abstract

We investigate the sintering of two touching circular particles by surface and grain boundary diffusion. Typical examples for the evolution of the shape of the particles, their surface curvatures, and their surface fluxes are given. The sintering kinetics are evaluated as a function of the dihedral angle at the grain boundary-surface junctions and the grain boundary to surface diffusivity ratio. In particular, the growth rates of the neck between the two particles, the growth rate exponents, and the changes in the lengths of the particle pairs are monitored. The times needed to reach certain fractions of the final equilibrium neck sizes are tabulated for typical experimental dihedral angles and diffusivity ratios. Our simulation is based on a rigorous mathematical system modeling the sintering of the two particles, and a rigorous numerical method for solving this system is adopted.

Zusammenfassung

Wir untersuchen das Sintern von zwei sich berührenden kreisförmigen Teilchen durch Oberflächen und Korngrenzendiffusion. Typische Beispiele für die Entwicklung der Gestalt der Teilchen, ihrer Oberflächenkrümmungen, und ihrer Oberflächenflüsse werden gegeben. Die Sinterkinetik wird als Funktion des Winkels, den die Oberflächen an den Sinterhälsen einschlieβen, und als Funktion des Verhältnisses zwischen Korngrenzen und Oberflächendiffusion berechnet. Insbesondere werden die Wachstumsraten der Sinterhälse zwischen den Teilchenpaaren, die Wachstumsexponenten, und die Änderung in der Länge der Teilchenpaare berechnet. Die Zeiten, die benötigt werden, um bestimmte Bruchteile der endgültigen Halsgröβen zu erreichen, werden für typische experimentell gefundene Diffusionsverhältnisse und Winkel berechnet. Unsere Simulation beruht auf einem strengen mathematischem System für die Modellierung des Sinterns der zwei Teilchen, und zur Lösung wird eine strenge mathematisch Methode verwendet.

References (26)

  • P. Bross et al.

    Acta metall.

    (1979)
  • H.E. Exner

    Acta metall.

    (1987)
  • M.F. Ashby

    Acta metall.

    (1974)
  • F.B. Swinkels et al.

    Acta metall.

    (1981)
  • F.Y. Génin et al.

    Acta metall. mater.

    (1993)
  • Y. Takahashi et al.

    Acta metall.

    (1988)
  • M.D. Thouless

    Acta metall. mater.

    (1993)
  • P.M. Hazzledine et al.

    Acta metall. mater.

    (1993)
  • H.E. Exner et al.

    Acta metall.

    (1979)
  • W. Zhang et al.

    J. Comp. Mater. Sci

    (1995)
  • H.E. Exner et al.
  • W.W. Mullins

    J. appl. Phys.

    (1957)
  • L. Martinez et al.

    Metall. Trans.

    (1982)
  • Cited by (107)

    • Formation and evolution mechanisms of micropores in powder metallurgy Ti alloys

      2022, Materials and Design
      Citation Excerpt :

      It should be pointed out that micropores is a common issue for powder metallurgy materials, i.e., for Ti alloys [4,10], Fe alloys [11]and Al alloys [12], as the pressureless sintering is essentially a solid-state diffusion process. In the past decades, enormous effort has been made to understand the pores evolution in powder metallurgy materials and several models were proposed [4,13–17]. Zhu [14] & Wang [16] firstly applied a two-sphere model to describe the change of pores during sintering, and claimed that both the grains and the pores often increase in size while decreasing in quantity, of which the driving force originates from the reduction of the surface free energy of the material.

    • Rigid body motion of multiple particles in solid-state sintering

      2022, Acta Materialia
      Citation Excerpt :

      This mechanism is coupled with surface diffusion; atoms flowing from the boundary to the neck are redistributed by surface diffusion [14,15]. Rigorous computer simulations have been conducted to study the sintering of two particles by this mechanism [14–21], providing the relationship between the rigid body motion and the thermodynamic driving force acting on a circular contact [12,17,21]. The particle velocity is described as a response to the driving force, i.e., the sintering force, and the mechanical forces arising from interaction among particles.

    View all citing articles on Scopus
    View full text