Elsevier

Intermetallics

Volume 4, Issue 3, 1996, Pages 217-229
Intermetallics

Intermetallic-matrix composites—a review

https://doi.org/10.1016/0966-9795(95)00037-2Get rights and content

Abstract

With properties lying between those of metals and ceramics, intermetallic compounds are particularly attractive for high temperature structural applications. Considerable progress has been made in improving the ductility of these rather brittle materials, especially with the titanium aluminides Ti3Al (alpha-2) and TiAl (gamma). But monolithic intermetallic compounds are unlikely to have the right combination of ambient temperature ductility and high temperature strength for the most demanding aeroengine applications. Further progress depends on the development of engineered composite materials, which exploit the combined potential of ceramics, intermetallics and metals to give a desirable balance of properties. This paper reviews developments in intermetallic matrix composites (IMCs), concentrating on the last four years and drawing examples from the three most widely researched matrix systems: titanium aluminides, nickel aluminides and molybdenum disilicide.

References (106)

  • L. Xiao et al.

    Mater. Sci. and Eng.

    (1991)
  • T.C. Lu et al.

    Acta. Metall. Mater.

    (1991)
  • P.C. Brennan et al.

    Mater. Sci. Eng.

    (1992)
  • J.H. Schneibel et al.

    Mater. Sci. Eng.

    (1992)
  • D.M. Bowden et al.

    Scripta Met. Mater.

    (1992)
  • N.S. Stoloff et al.

    Mater. Sci. Eng.

    (1991)
  • X. Liang et al.

    Mater. Sci. Eng.

    (1992)
  • X. Liang et al.

    Mater. Sci. Eng.

    (1992)
  • D.P. Mason et al.

    Scripta Met. Mater.

    (1993)
  • S. Nourbakhsh et al.

    Mater. Sci. Eng.

    (1992)
  • J. Newkirk et al.

    Mater. Sci. Eng.

    (1992)
  • J. Kesapradist et al.

    Mater. Sci. Eng.

    (1992)
  • H.E. Deve et al.

    Mater. Sci Eng.

    (1992)
  • Y.-L. Jeng et al.

    Scripta Met. Mater.

    (1993)
  • H.E. Deve et al.

    Acta Metall. Mater.

    (1991)
  • B.P. Bewlay et al.

    Mater. Sci. Eng.

    (1995)
  • Y.-L. Jeng et al.

    Scripta Met. Mater.

    (1993)
  • C.H. Henager et al.

    Scripta. Met. Mater.

    (1992)
  • M.J. Maloney et al.

    Mater. Sci. Eng.

    (1992)
  • M. Dahms et al.

    Mater. Sci. Eng.

    (1992)
  • K.T. Venkateswara Rao et al.

    Acta Met. Mater.

    (1992)
  • K.T. Venkateswara Rao et al.

    Mater. Sci. Eng.

    (1992)
  • Z.X. Guo et al.

    Scripta Met. Mater.

    (1994)
  • S.M. Jeng et al.

    Mater. Sci. Eng.

    (1991)
  • J.-M. Yang et al.

    Mater. Sci. Eng.

    (1991)
  • D.S. Shih et al.

    Scripta Met. Mater.

    (1990)
  • G.K. Goo et al.

    Scripta Met. Mater.

    (1992)
  • S. Ochiai et al.

    Intermetallics

    (1994)
  • M.J. Wood et al.

    Mater. Sci. Eng.

    (1995)
  • I.N. Jujur et al.

    Mater. Sci. Eng.

    (1995)
  • K.T. Venkateswara Rao et al.

    Met. Trans. A.

    (1992)
  • L. Murugesh et al.
  • Z. Li et al.
  • H. Clemens et al.
  • M.J. Strum et al.
  • J.I. Eldridge et al.

    J. Mater. Sci. Lett.

    (1989)
  • J.I. Eldridge
  • Martin Marietta

    Company Data Sheet

    (1993)
  • C.R. Feng et al.
  • D. Zhao et al.
  • C.R. Feng et al.
  • D.S. Schwartz et al.
  • S. Dymek et al.
  • T.R. Bieler et al.
  • D.P. Mason et al.
  • D. Keith Patrick et al.
  • V.I. Glushko et al.

    J. Mater. Sci. Lett.

    (1993)
  • H.Y. Chou et al.
  • R.A. Mackay et al.

    JOM

    (1991)
  • C.M. Ward-Close et al.

    J. Mater. Sci.

    (1990)
  • Cited by (0)

    View full text