Chapter 10
The modern inorganic fluorochemical industry

https://doi.org/10.1016/S0022-1139(00)85278-1Get rights and content

First page preview

First page preview
Click to open first page preview

References (139)

  • P.J. Drivas et al.

    Atmos. Environ.

    (1974)
  • G. Barth-Wehrenalp

    J. Inorg. Nucl. Chem.

    (1956)
  • G.A. Olah et al.

    J. Inorg. Nucl. Chem.

    (1960)
  • (1985)
  • A.S. Marggraff

    Memores de Berlin

    (1768)
  • K. Sheele

    Srens. Vents. Acad.

    (1771)
  • H. Davy

    Philos. Trans.

    (1813)
  • E. Frémy

    Ann. Chim. Phys.

    (1856)
  • B. Heley, private communication,...
  • See Chem. Mark. Rep., Nov. 11,...
  • R.L. Jarry et al.

    J. Phys. Chem.

    (1953)
  • C.E. Vardergee et al.

    J. Chem. Thermodyn.

    (1970)
  • R.J. Gillespie et al.

    J. Chem. Soc. A

    (1970)
  • E.V. Frank et al.

    Z. Electrochem.

    (1957)
  • J. Janzen et al.

    J. Chem. Phys.

    (1969)
  • (1970)
  • (1985)
  • Hydrogen Fluoride

    (1980)
  • R.Y. Eagers
  • J.M. Wetherhold

    J. Occup. Med.

    (1965)
  • G. White

    Nuexco Report No. 198

    (1985)
  • H. Moissan et al.

    Ann. Chim. Phys.

    (1902)
  • W.E. Watson, H.G. Tepp and M.H. Cohen, U.S. Pat. 3 336 111(1967) (to Allied...
  • E.E. Charlton et al.

    Gen. Electr. Rev.

    (1937)
  • B.M. Gokhberg

    Zh. Tekh. Fiz.

    (1942)
  • Br. Pat. 532 670(1941) (to British Thompson-Houston...
  • R. Plank

    Kältetechnik

    (1956)
  • K.P. Murphy and R.F. Stahl, U.S. Pat. 3 642 639 (1972) (to Allied...
  • R.F. Stahl, U.S. Pat. 3 719 603 (1973) (to Allied...
  • H. Hodge et al.

    J. Am. Pharm. Assoc.

    (1959)
  • J.R. Callaham

    Chem. Metall. Eng.

    (1945)
  • L. Telham, private communication,...
  • R.J. Gillespie

    Acc. Chem. Res.

    (1968)
  • R.J. Gillespie et al.
  • R.K. Iler, U.S. Pat. 2 312 413(1943) (to...
  • R. Stephenson and W. Watson, U.S. Pat. 2 430 963(1947) (to Allied...
  • R. Wheatley, D. Treadway and R. Toennies, U.S. Pat. 3 957 959(1976) (to Du...
  • C.L. Thomas, U.S. Pat. 2 313 103(1943) (to...
  • V.N. Ipatieff and C.B. Linn, U.S. Pat. 2 428 279(1947) (to...
  • P.T. Parker and I. Mayer, U.S. Pat. 3 778 489(1973) (to...
  • J.W. Brockington, U.S. Pat. 3 922 319(1975) (to...
  • D.A. McCauley, U.S. Pat. 3 928 487(1975) (to Standard Oil,...
  • J.W. Brockington, U.S. Pat. 4 008 178(1977) (to...
  • V.N. Ipatieff and C.B. Linn, U.S. Pat. 2 421 946(1947) (to...
  • C.A. Braidwood and A.G. Hovey, U.S. Pat. 2 419 185(1947) (to Reichold...
  • P.T. Parker, U.S. Pat. 3 594 445(1971) (to...
  • H.S. Block, U.S. Pat. 3 678 120(1972) (to...
  • G.A. Olah, U.S. Pat. 3 708 553(1973) (to...
  • P.G. Rodewald, U.S. Pat. 3 925 495(1975) (to...
  • P.G. Rodewald, U.S. Pat. 3984 352(1976) (to...
  • Cited by (16)

    • In-situ remediation of phosphogypsum in a cement-free pathway: Utilization of ground granulated blast furnace slag and NaOH pretreatment

      2023, Chemosphere
      Citation Excerpt :

      These results demonstrated that fluorine impurities in OPG could be mainly in the forms of soluble fluoride (e.g., F−, SiF62−) and sparingly soluble fluorite (CaF2). With the NaOH pretreatment, the incorporation of sodium ions in the systems may increase the solubility of soluble fluoride impurities, then form water-soluble sodium fluoride (Meshri, 1986). Further, previous studies showed that the solubility of fluorite increased when the pH exceeded 6.9.

    • Recovery of lithium from mineral resources: State-of-the-art and perspectives – A review

      2019, Hydrometallurgy
      Citation Excerpt :

      Fluorite is a naturally occurring mineral and has been historically used (together with conc. H2SO4) for HF production (Meshri, 1986). The direct use of fluorite seems to be more economical in terms of reagent costs compared with HF/H2SO4 system.

    • X-ray single crystal structure and vibrational spectra of AgBF<inf>4</inf>

      2005, Solid State Sciences
      Citation Excerpt :

      It may be prepared in the anhydrous form by addition of BF3 to AgF suspended in solvents such as nitromethane, sulfur dioxide or ethylbenzene [2,3]. AgBF4 has gained his industrial importance to its catalytic activity, uses in the separation of olefin–paraffin mixtures, uses in nitration of aromatic compounds, etc. [2–4]. It forms coordination compounds with numerous organic compounds (pyridine, dimethilypyridine, olefins, aromatic hydrocarbons, nitriles, ethers) as well as with water and ammonia [3].

    View all citing articles on Scopus
    View full text