Dynamical simulations of nonequilibrium processes — Heat flow and the Kapitza resistance across grain boundaries

https://doi.org/10.1016/S0038-1098(97)00049-5Get rights and content

Abstract

We report molecular dynamics simulations of nonequilibrium heat flow in a solid system in the local-equilibrium or hydrodynamic approximation and demonstrate that local equilibrium can be achieved in small numbers of atomic layers over long simulation runs. From the dynamical simulations, we calculate the thermal boundary (Kapitza) resistance that arises from heat flow across Si grain boundaries and compare with the traditional approach based on calculating the transmission and reflection of harmonic phonons at the grain boundary.

References (23)

  • P. Sindzingre et al.

    J. Phys.: Condens. Matter

    (1990)
    P.J.D. Lindan et al.

    J. Phys.: Condens. Matter

    (1991)
  • M.P. Allen et al.
  • P.L. Kapitza

    J. Phys. USSR

    (1941)
  • E.T. Swartz et al.

    Rev. Mod. Phys.

    (1989)
  • R. Kubo

    Rep. Prog. Phys.

    (1966)
    M.S. Green

    J. Chem. Phys.

    (1954)
  • M.J. Gillan et al.

    J. Phys.

    (1983)
  • D.J. Evans et al.

    Comput. Phys. Rep.

    (1984)
  • A. Tenenbaum et al.

    Phys. Rev.

    (1982)
  • D.A. Young et al.

    Phys. Rev.

    (1989)
  • S. Pettersson et al.

    Phys. Rev.

    (1990)
  • R.J. Stoner et al.

    Phys. Rev. Lett.

    (1992)
  • Cited by (249)

    • Do dislocations always decrease thermal conductivity?

      2023, International Journal of Thermal Sciences
    • Thermal research of a single crystal tungsten target positron source for the STCF project in China

      2022, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
    View all citing articles on Scopus
    View full text