Removal of heavy metals using waste eggshell

https://doi.org/10.1016/S1001-0742(07)60234-4Get rights and content

Abstract

The removal capacity of toxic heavy metals by the reused eggshell was studied. As a pretreatment process for the preparation of reused material from waste eggshell, calcination was performed in the furnace at 800°C for 2 h after crushing the dried waste eggshell. Calcination behavior, qualitative and quantitative elemental information, mineral type and surface characteristics before and after calcination of eggshell were examined by thermal gravimetric analysis (TGA), X-ray fluorescence (XRF), X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. After calcination, the major inorganic composition was identified as Ca (lime, 99.63%) and K, P and Sr were identified as minor components. When calcined eggshell was applied in the treatment of synthetic wastewater containing heavy metals, a complete removal of Cd as well as above 99% removal of Cr was observed after 10 min. Although the natural eggshell had some removal capacity of Cd and Cr, a complete removal was not accomplished even after 60 min due to quite slower removal rate. However, in contrast to Cd and Cr, an efficient removal of Pb was observed with the natural eggshell rather than the calcined eggshell. From the application of the calcined eggshell in the treatment of real electroplating wastewater, the calcined eggshell showed a promising removal capacity of heavy metal ions as well as had a good neutralization capacity in the treatment of strong acidic wastewater.

References (20)

There are more references available in the full text version of this article.

Cited by (223)

View all citing articles on Scopus

Project supported by the Grant from Inje University, 2000

View full text