Skip to main content
Log in

A Lattice Boltzmann Method for Simulation of a Three-Dimensional Drop Impact on a Liquid Film

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

A single-phase free surface tracking model based on the Lattice Boltzmann Method (LBM), which has capability of simulating liquid-gas system with the assumption that the gas phase has only negligible influence on the liquid phase, is utilized to simulate the flow of a drop impacting on a liquid film. Three typical outcomes in the flows, i.e., deposition, crown and splash, which have been observed in the previous experiments, are obtained in the present three dimensional numerical simulations. The numerical results are consistent with the experimental and analytical results available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. COSSALI G. E., COGHE A. and MARENGO M. The impact of a single drop on a wetted solid surface[J]. Exp. Fluids. 1997, 22(6): 463–472.

    Article  Google Scholar 

  2. RIOBOO R., MARENGO M. and COSSALI G. E. et al. Comparison of drop impact: Dry and wetted cases[C]. Proceedings of the 16th International conf. On Liquid Atomisation and Spray Systems (ILASS). Darnstadt, Germany, 2000, VII-11-1-VII-11-6.

    Google Scholar 

  3. MACKLIN W. C., METAXAS G. J. Splashing of drops on liquid layers[J]. J. Appl. Phys., 1976, 47(9): 3963–3970.

    Article  Google Scholar 

  4. YARIN A. L., WEISS D. Impact of drops on solid surface: self-similar capillary waves, and splashing as a new type of cinematic discontinuity[J]. J. Fluid Mech., 1995, 283: 141–173.

    Article  Google Scholar 

  5. RIEBER M., FROHN A. Numerical simulation of splashing drops[C]. Proceedings of the 14th International conf. On Liquid Atomisation and Spray Systems (ILASS-Europe). Manchester, England, 1998, 91–96.

    Google Scholar 

  6. GUEYFFIER D., ZALESKI S. Droplet splashing on a thin liquid film[J]. Phys. Fluids, 2003, 15(6): 1650–1657.

    Article  Google Scholar 

  7. PISMEM L. M. Mesoscopic hydrodynamics of contact line motion[J]. Colloids and Surface A, 2002, 206(1-3): 11–30.

    Article  Google Scholar 

  8. GUNSTENSEN A. K., ROTHMAN D. H. and ZALESKI S. et al. Lattice Boltzmann model of immiscible fluids[J]. Phys. Rev. A, 1991, 43(18): 4320–4327.

    Article  Google Scholar 

  9. TÖLKE J., KRAFCZYK M. and SCHULZ M. et al. Lattice Boltzmann simulations of binary fluid flow through porous media[J]. Philos. Trans. R. Soc. Lond. A, 2002, 360(1792): 535–545.

    Article  MathSciNet  Google Scholar 

  10. SHAN X., CHEN H. Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Phys. Rev. E, 1993, 47(3): 1815–1819.

    Article  Google Scholar 

  11. HUANG Wei-feng, LI Yong and LIU Qiu-sheng. The electrohydrodynamics application of lattice Boltzmann: the deformation and instability of a drop in a unified electric field[J]. Chinese Science Bulletin, 2007, 52(11): 1232–1236(in Chinese).

    Google Scholar 

  12. SANKARANARAYANAN K., SUNDARESAN S. Lift force in bubbly suspensions[J]. Chem. Eng. Sci., 2002, 57(17): 3521–3542.

    Article  Google Scholar 

  13. SWIFT M. R., OSBORN W. R. and YEOMANS J. M. Lattice Boltzmann simulation of nonideal fluids[J]. Phys. Rev. Lett., 1995, 75(5): 830–833.

    Article  Google Scholar 

  14. SATOFUKA N. Computational fluid dynamics 2000[M]. Berlin: Springer-Verlag, 2001, 499–504.

    Google Scholar 

  15. HE X., CHEN S. and ZHANG R. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability[J]. J. Comput. Phys., 1999,152(2): 642–663.

    Article  MathSciNet  Google Scholar 

  16. LEE T., LIN C. L. A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio[J]. J. Comput. Phys., 2005, 206(1): 16–47.

    Article  MathSciNet  Google Scholar 

  17. DUAN Ya-li, LIU Ru-xun. Lattice Boltzmann simulations of triangular cavity flow and free-surface problems[J]. Journal of Hydrodynamics, Ser. B, 2007, 19(2): 127–134.

    Article  Google Scholar 

  18. THUREY N., RUDE U. and KORNER C. Interactive free surface fluids with the lattice Boltzmann method[R]. Technical Report 05-4, Erlangen and Nuremburg, Germany: University of Erlangen-Nuremberg, 2005.

    Google Scholar 

  19. XING X. Q., BUTLER D. L. and YANG C. A Lattice Boltzmann based single-phase method for modeling surface tension and wetting[J]. Computational Materials Science, 2007, 39(2): 282–290.

    Article  Google Scholar 

  20. QIAN Y. H., D’HUMIERES D. and LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhys. Lett., 1992, 17(6): 479–484.

    Article  Google Scholar 

  21. GUO Zhao-li et al. The lattice Boltzmann of hydrodynamics[M]. Wuhan: Hubei Science and Technology Press, 2002(in Chinese).

    Google Scholar 

  22. WANG A. B., CHEN C. C. Splashing impact of a single drop onto very thin liquid films[J]. Physics of Fluids, 2000, 12(9): 2155–2158.

    Article  Google Scholar 

  23. ROISMAN I. V., TROPEA C. Impact of a drop onto a wetted wall: Description of crown formation and propagation[J]. J. Fluid Mech., 2002, 472: 373–397.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-hui Hu.

Additional information

Project supported by the National Natural Science Foundation of China (Grant No. 10472062), the Special Scientific Foundation for Selection and Cultivation of Excellent Young Scholars in Shanghai and the Shanghai Leading Academic Discipline Project (Grant No. Y0103).

Bioglaphy: SHI Zi-yuan (1982-), Female, Master Student

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Zy., Yan, Yh., Yan, F. et al. A Lattice Boltzmann Method for Simulation of a Three-Dimensional Drop Impact on a Liquid Film. J Hydrodyn 20, 267–272 (2008). https://doi.org/10.1016/S1001-6058(08)60056-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(08)60056-6

Key words

Navigation