Skip to main content
Log in

Numerical Simulation of Batoid Locomotion

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The hydrodynamics of batoid swimming motions is investigated using the three-dimensional simulation of a self-propelled body in still water. The kinematics of batoid swimming is characterized by large amplitude undulations of the pectoral fins while the middle part of the body remains straight. The majority of the thrust is generated by pectoral fins. Linear and quadratic amplitude variations are used for the pectoral fins in analyzing the locomotion of the batoid. Navier-Stokes equations are used to solve the unsteady fluid flow. A user defined function and a dynamic mesh method are applied to track the batoid locomotion. The mean swimming velocities of 1.6 BL/s and 1.3 BL/s are achieved, respectively, with thrust coefficients of 0.13 in and 0.095 in the dynamical simulation, where BL/s is the body length per second. The maximum propulsive efficiency 19% is achieved when the frequency of the undulation is 2.2 Hz in both amplitude variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HAMLETT W. C. Sharks, skates and rays: The biology of elasmobranch fishes[M]. Baltimore, USA: John Hopkins University Press, 1999, 1–42.

    Google Scholar 

  2. STIASSNY M., PARENTI L. and JOHNSON G. Interrelationships of fishes[M]. New York: Academic Press, 1996, 35–62.

    Google Scholar 

  3. EVANS D. H. The physiology of fishes[M]. Second Edition, New York: CRC Press, 1998, 3–24

    Google Scholar 

  4. KLAUSEWITZ W. Die Bewegungsweise der Geigen-rochen aus funktioneller und stammesgeschichtlicher Sicht[J]. Natur Museum, 1965, 95: 97–108.

    Google Scholar 

  5. ROSENBERGER L. J., WESTNEAT M. W. Functional morphology of undulatory pectoral fin locomotion in the stingray Taeniura lymma[J]. Journal of Experimental Biology, 1999, 202(24): 3523–3539.

    Google Scholar 

  6. MADDOCK L., BONE Q. and RAYNER J. M. V. Mechanics and physiology of animal swimming[M]. Cambridge, UK: Cambridge University Press, 1994, 45–62.

    Book  Google Scholar 

  7. ROSENBERGER L. J. Pectoral fin locomotion in batoid fishes: Undulation versus oscillation[J]. Journal of Experimental Biology, 2001, 204(2): 379–394.

    Google Scholar 

  8. HEATHCOTE S., WANG Z. and GURSUL I. Effect of spanwise flexibility on flapping wing propulsion[J]. Journal of Fluids and Structures, 2008, 24(2): 183–199.

    Article  Google Scholar 

  9. YANG S. B., QIU J. and HAN X. Y. Kinematics modeling and experiments of pectoral oscillation propulsion robotic fish[J]. Journal of Bionic Engineering, 2009, 6(2): 174–179.

    Article  Google Scholar 

  10. CAI Y., BI S. and ZHANG L. et al. Design of a robotic fish propelled by oscillating flexible pectoral foils[C]. The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, USA, 2009, 2138–2142.

    Chapter  Google Scholar 

  11. LIU Zhen, HYUN Beom-soo and KIM M. et al. Experimental and numerical study for hydrodynamic characteristics of an oscillating hydrofoil[J]. Journal of Hydrodynamics, 2008, 20(3): 280–287.

    Article  Google Scholar 

  12. BLONDEAUX P., FORNARELLI F. and GUGLI-ELMINI L. et al. Numerical experiments on flapping foils mimicking fish-like locomotion[J]. Physics of Fluids, 2005, 17(11): 113601.

    Article  Google Scholar 

  13. HU Wen-rong. Hydrodynamic study on a pectoral fin rowing model of a fish[J]. Journal of Hydrodynamics, 2009, 21(4): 463–472.

    Article  Google Scholar 

  14. DENG J., SHAO X. M. and REN A. L. a new modification of the immersed-boundary method for simulation flows with complex moving boundaries[J]. International Journal for Numerical Methods in Fluids, 2006, 52(11): 1195–1213.

    Article  Google Scholar 

  15. SHAO Xue-ming, PAN Ding-yi and Deng Jian et al. Numerical studies on the propulsion and wake structures of finite-span flapping wings with different aspect ratios[J]. Journal of Hydrodynamics, 2010, 22(2): 147–154.

    Article  Google Scholar 

  16. DUTSCH H., DURST F. and BECKER S. et al. Low Reynolds number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers[J]. Journal of Fluid Mechanics, 1998, 360: 249–271.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-shan Chen.

Additional information

Project supported by the National Natural Science Foundation of China (Grant No. 59705011).

Biography: CHEN Wei-shan (1965-), Male, Ph. D., Professor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Ws., Wu, Zj., Liu, Jk. et al. Numerical Simulation of Batoid Locomotion. J Hydrodyn 23, 594–600 (2011). https://doi.org/10.1016/S1001-6058(10)60154-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(10)60154-0

Key words

Navigation