Skip to main content
Log in

The effect of variable viscosity on the flow and heat transfer of a viscous Ag-water and Cu-water nanofluids

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

A numerical study is carried out to study the effects of the temperature dependent viscosity on the flow and heat transfer of a nanofluid over a flat surface in the presence of viscous dissipation. The governing nonlinear partial differential equations are transformed into nonlinear ordinary differential equations, and are solved numerically by the Keller-box method. The numerical results indicate that the effect of nanoparticle volume fraction is to increase the heat transfer and hence enhance the thermal boundary layer thickness. This is true even in the presence of variable viscosity and the viscous dissipation. Furthermore, the results obtained for heat transfer characteristics with nanoparticles reveal many interesting behaviors that warrant further study on the effects of the “nano-solid-particles”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHOI S. U. S., ZHANG Z. G. and YU W. et al. Anomalously thermal conductivity enhancement in nanotube suspensions[J]. Applied Physics Letters, 2001, 79(14): 2252–2254.

    Article  Google Scholar 

  2. KANG H. U., KIM S. H. and OH J. M. Estimation of thermal conductivity of nanofluid using experimental effective particle volume[J]. Experimental Heat Transfer, 2006, 19(3): 181–191.

    Article  Google Scholar 

  3. MAIGA S. E. B., PALM S. J. and NGUYEN C. T. et al. Heat transfer enhancement by using nanofluids in forced convection flow[J]. International Journal of Heat Fluid Flow, 2005, 26(4): 530–546.

    Article  Google Scholar 

  4. TIWARI R. K., DAS M. K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids[J]. International Journal of Heat Mass Transfer, 2007, 50(9–10): 2002–2018.

    Article  Google Scholar 

  5. TZOU D. Y. Thermal instability of nanofluids in natural convection[J]. International Journal of Heat Mass Transfer, 2008, 51(11–12): 2967–2979.

    Article  Google Scholar 

  6. ABU-NADA E. Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step[J]. International Journal of Heat and Fluid Flow, 2008, 29(1): 242–249.

    Article  Google Scholar 

  7. OZTOP H. F., ABU-NADA E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids[J]. International Journal of Heat and Fluid Flow, 2008, 29(5): 1326–1336.

    Article  Google Scholar 

  8. KUZNETSOV A. V., NIELD D. A. Natural convective boundary-layer flow of a nanofluid past a vertical plate[J]. International Journal of Thermal Sciences, 2010, 49(2): 243–247.

    Article  Google Scholar 

  9. AMINOSSADATI S. M., GHASEMI B. Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure[J]. European Journal of Mechanics B/Fluids, 2009, 28(5): 630–640.

    Article  Google Scholar 

  10. KHANAFER K., VAFAI K. and LIGHTSTONE M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids[J]. International Journal of Heat Mass Transfer, 2003, 46(19): 3639–3653.

    Article  Google Scholar 

  11. BUONGIORNO J., HU W. Nanofluid coolants for advanced nuclear power plants[C]. International Congress on Advances in Nuclear Power Plants. Seoul, Korea, Paper 5705, 2005.

    Google Scholar 

  12. KHAN W. A., Pop I. Boundary-layer flow of a nano-fluid past a stretching sheet[J]. International Journal of Heat Mass Transfer, 2010, 53(11–12): 2477–2483.

    Article  Google Scholar 

  13. KAKAÇ S., PRAMUANJAROENKIJ A. Review of convective heat transfer enhancement with nano-fluids[J]. International Journal of Heat Mass Transfer, 2009, 52(13–14): 3187–3196.

    Article  Google Scholar 

  14. SUN Lei, LIN Jian-zhong and BAO Fu-bing. Numerical simulation on the deposition of nanoparticles under laminar conditions[J]. Journal of Hydrodynamics, Ser. B, 2006, 18(6): 676–680.

    Article  Google Scholar 

  15. LIU Song, LIN Jian-zhong. Numerical simulation of nanoparticle coagulation in a Poiseuille flow via a mo-ment method[J]. Journal of Hydrodynamics, 2008, 20(1): 1–9.

    Article  MathSciNet  Google Scholar 

  16. WANG Yu-ming, Lin JIAN-zhong. Evolution of number concentration of nano-particles undergoing Brownian coagulation in the transition regime[J]. Journal of Hydrodynamics, 2011, 23(4): 416–421.

    Article  Google Scholar 

  17. NIELD D. A., KUZNETSOV A. V. The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nano-fluid[J]. International Journal of Heat Mass Transfer, 2009, 52(25–26): 5792–5795.

    Article  Google Scholar 

  18. MUKHOPADHYAY S., LAYEK G. C. Effect of thermal radiation and variable fluid viscosity on free convective and heat transfer past a porous stretching sur-face[J]. International Journal of Heat Mass Transfer, 2008, 51(9–10): 2167–2178.

    Article  Google Scholar 

  19. PRASAD K. V., VAJRAVELU K. and DATTI P. S. The effects of variable fluid properties on the hydroma-gnetic flow and heat transfer over a non-linearly stretching sheet[J]. International Journal of Thermal Sciences, 2010, 49(3): 603–610.

    Article  Google Scholar 

  20. SEEDBEEK M. A. Finite element method for the effects of chemical reaction, variable viscosity, thermophoresis and heat generation / absorption on a boundary layer hydro magnetic flow with heat and mass transfer over a heat surface[J]. Acta Mechanic, 2005, 177(1–4): 1–18.

    Article  Google Scholar 

  21. ALI M. E. The effect of variable viscosity on mixed convection heat transfer along a vertical moving surface[J]. International Journal of Thermal Sciences, 2006, 45(1): 60–69.

    Article  MathSciNet  Google Scholar 

  22. BRINKMAN H. C. The viscosity of concentrated suspensions and solution[J]. Journal of Chemical Physics, 1952, 20(4): 571.

    Article  Google Scholar 

  23. MAXWELL J. A treatise on electricity and magnetism[M]. Second Edition, Cambridge, UK: Oxford University Press, 1904.

    Google Scholar 

  24. CHAMKHA A. J., ISSA C. Effects of heat generation/ absorption and thermophoresis on hydromagnetic flow with heat and mass transfer over a flat surface[J]. International Journal of Numerical Methods For Heat and Fluid Flow, 2000, 10(4): 432–448.

    Article  Google Scholar 

  25. CEBECI T., BRADSHAW P. Physical and computational aspects of convective heat transfer[M]. New York, USA: Springer-Verlag, 1984.

    Book  Google Scholar 

  26. KELLER H. B. Numerical methods for two-point boundary value problems[M]. New York, USA: Dover, 1992.

    Google Scholar 

  27. PRASAD K. V., PAL D. and DATTI P. S. MHD flow and heat transfer in the flow of a power law fluid over a non-isothermal stretching sheet[J]. Communications in Nonlinear Science Numerical Simulation, 2009, 14(5): 2178–2189.

    Article  Google Scholar 

  28. PRASAD K. V., DATTI P. S. and VAJRAVELU K. Hydromagnetic flow and heat transfer of a non-Newtonian power law fluid over a vertical stretching sheet[J]. International Journal of Heat Mass Transfer, 2010, 53(5–6): 879–888.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiu-On Ng.

Additional information

Project supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant No. Hku 715510E).

Biography: VAJRAVELU Kuppalapalle (1949-), Male, Ph. D., Professor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vajravelu, K., Prasad, K. & Ng, CO. The effect of variable viscosity on the flow and heat transfer of a viscous Ag-water and Cu-water nanofluids. J Hydrodyn 25, 1–9 (2013). https://doi.org/10.1016/S1001-6058(13)60332-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(13)60332-7

Key words

Navigation